
Learn Multibody Dynamics

Jason K. Moore

Apr 02, 2024

TABLE OF CONTENTS

1 Introduction 3
1.1 What You Will Learn . 3
1.2 Prerequisites . 3
1.3 Purpose . 3
1.4 Choice of dynamics formalism . 4
1.5 Choice of programming language . 4
1.6 History . 4
1.7 Acknowledgements . 5
1.8 Tools Behind the Book . 5

2 License 7

3 Install the Software 15
3.1 1) Miniconda . 15
3.2 2) Create and Activate an Environment . 15
3.3 3) Install Packages . 16
3.4 4) Open Jupyter Notebook . 16
3.5 Software Versions . 16

4 Jupyter and Python 19
4.1 Learning Objectives . 19
4.2 Introduction . 19
4.3 The Jupyter Notebook . 19
4.4 Python . 21
4.5 Learn More . 28

5 SymPy 29
5.1 Learning Objectives . 29
5.2 Introduction . 29
5.3 Import and Setup . 30
5.4 Symbols . 30
5.5 Undefined Functions . 31
5.6 Symbolic Expressions . 32
5.7 Printing . 35
5.8 Differentiating . 36
5.9 Evaluating Symbolic Expressions . 38
5.10 Matrices . 41
5.11 Solving Linear Systems . 45
5.12 Simplification . 48
5.13 Learn more . 51

i

6 Orientation of Reference Frames 53
6.1 Learning Objectives . 53
6.2 Reference Frames . 53
6.3 Unit Vectors . 54
6.4 Simple Orientations . 54
6.5 Direction Cosine Matrices . 57
6.6 Successive Orientations . 58
6.7 SymPy Mechanics . 60
6.8 Euler Angles . 64
6.9 Alternatives for Representing Orientation . 69
6.10 Learn more . 69

7 Vectors 71
7.1 Learning Objectives . 71
7.2 What is a vector? . 72
7.3 Vector Functions . 73
7.4 Addition . 74
7.5 Scaling . 76
7.6 Dot Product . 77
7.7 Cross Product . 80
7.8 Vectors Expressed in Multiple Reference Frames . 82
7.9 Relative Position Among Points . 83

8 Vector Differentiation 89
8.1 Learning Objectives . 89
8.2 Partial Derivatives . 90
8.3 Product Rule . 92
8.4 Second Derivatives . 93
8.5 Vector Functions of Time . 93

9 Angular Kinematics 95
9.1 Learning Objectives . 95
9.2 Introduction . 96
9.3 Angular Velocity . 96
9.4 Angular Velocity of Simple Orientations . 99
9.5 Body Fixed Orientations . 101
9.6 Time Derivatives of Vectors . 103
9.7 Addition of Angular Velocity . 105
9.8 Angular Acceleration . 106
9.9 Addition of Angular Acceleration . 108

10 Translational Kinematics 111
10.1 Learning Objectives . 111
10.2 Introduction . 111
10.3 Translational Velocity . 111
10.4 Velocity Two Point Theorem . 116
10.5 Velocity One Point Theorem . 118
10.6 Translational Acceleration . 119
10.7 Acceleration Two Point Theorem . 119
10.8 Acceleration One Point Theorem . 121

11 Holonomic Constraints 123
11.1 Learning Objectives . 123
11.2 Four-Bar Linkage . 124
11.3 Solving Holonomic Constraints . 128

ii

11.4 General Holonomic Constraints . 130
11.5 Generalized Coordinates . 132
11.6 Calculating Additional Kinematic Quantities . 134

12 Nonholonomic Constraints 137
12.1 Learning Objectives . 137
12.2 Motion Constraints . 138
12.3 Chaplygin Sleigh . 139
12.4 Rolling Without Slip . 142
12.5 Kinematical Differential Equations . 143
12.6 Choosing Generalized Speeds . 144
12.7 Snakeboard . 148
12.8 Degrees of Freedom . 153

13 Mass Distribution 155
13.1 Learning Objectives . 155
13.2 Particles and Rigid Bodies . 156
13.3 Mass . 156
13.4 Mass Center . 157
13.5 Distribution of Mass . 158
13.6 Inertia Matrix . 163
13.7 Dyadics . 163
13.8 Properties of Dyadics . 166
13.9 Inertia Dyadic . 166
13.10 Parallel Axis Theorem . 169
13.11 Principal Axes and Moments of Inertia . 170
13.12 Angular Momentum . 172

14 Force, Moment, and Torque 175
14.1 Learning Objectives . 175
14.2 Force . 176
14.3 Bound and Free Vectors . 176
14.4 Moment . 176
14.5 Couple . 178
14.6 Equivalence & Replacement . 178
14.7 Specifying Forces and Torques . 180
14.8 Equal & Opposite . 181
14.9 Contributing and Noncontributing Forces . 182
14.10 Gravity . 182
14.11 Springs & Dampers . 183
14.12 Friction . 184
14.13 Aerodynamic Drag . 185
14.14 Collision . 186

15 Generalized Forces 189
15.1 Learning Objectives . 189
15.2 Introduction . 190
15.3 Partial Velocities . 191
15.4 Nonholonomic Partial Velocities . 193
15.5 Generalized Active Forces . 194
15.6 Generalized Active Forces on a Rigid Body . 197
15.7 Nonholonomic Generalized Active Forces . 199
15.8 Generalized Inertia Forces . 200
15.9 Nonholonomic Generalized Inertia Forces . 202

iii

16 Unconstrained Equations of Motion 203
16.1 Learning Objectives . 203
16.2 Dynamical Differential Equations . 204
16.3 Body Fixed Newton-Euler Equations . 204
16.4 Equations of Motion . 207
16.5 Example of Kane’s Equations . 208
16.6 Implicit and Explicit Form . 213

17 Simulation and Visualization 215
17.1 Learning Objectives . 215
17.2 Numerical Integration . 216
17.3 Numerical Evaluation . 216
17.4 Simulation . 221
17.5 Plotting Simulation Trajectories . 226
17.6 Integration with SciPy . 230
17.7 Animation with Matplotlib . 234

18 Three Dimensional Visualization 239
18.1 pythreejs . 244
18.2 Creating a Scene . 244
18.3 Transformation Matrices . 245
18.4 Geometry and Mesh Definitions . 249
18.5 Scene Setup . 250
18.6 Animation Setup . 251
18.7 Animated Interactive 3D Visualization . 252

19 Equations of Motion with Nonholonomic Constraints 253
19.1 Learning Objectives . 253
19.2 Introduction . 254
19.3 Snakeboard Equations of Motion . 254
19.4 Simulate the Snakeboard . 262
19.5 Animate the Snakeboard . 265
19.6 Calculating Dependent Speeds . 268

20 Equations of Motion with Holonomic Constraints 271
20.1 Learning Objectives . 271
20.2 Introduction . 272
20.3 Four-bar Linkage Equations of Motion . 272
20.4 Simulate without constraint enforcement . 278
20.5 Animate the Motion . 284
20.6 Correct Dependent Coordinates . 286
20.7 Simulate Using a DAE Solver . 288

21 Exposing Noncontributing Forces 293
21.1 Learning Objectives . 293
21.2 Introduction . 294
21.3 Double Pendulum Example . 294
21.4 Apply Newton’s Second Law Directly . 296
21.5 Auxiliary Generalized Speeds . 298
21.6 Auxiliary Generalized Active Forces . 299
21.7 Auxiliary Generalized Inertia Forces . 300
21.8 Augmented Dynamical Differential Equations . 301
21.9 Compare Newton and Kane Results . 302

22 Energy and Power 305

iv

22.1 Learning Objectives . 305
22.2 Introduction . 306
22.3 Kinetic Energy . 306
22.4 Potential Energy . 306
22.5 Total Energy . 307
22.6 Energetics of Jumping . 307
22.7 Simulation Setup . 313
22.8 Conservative Simulation . 317
22.9 Conservative Simulation with Ground Spring . 318
22.10 Nonconservative Simulation . 319
22.11 Simulation with Passive Knee Torques . 320
22.12 Simulation with Active Knee Torques . 322

23 Equations of Motion with the Lagrange Method 325
23.1 Learning Objectives . 325
23.2 Introduction . 326
23.3 Inertial forces from kinetic energy . 326
23.4 Conservative Forces . 328
23.5 The Lagrange Method . 328
23.6 Constrained equations of motion . 331
23.7 Lagrange’s vs Kane’s . 335

24 Unconstrained Equations of Motion with the TMT Method 337
24.1 Example Formulation . 339
24.2 Create the TMT Components . 342
24.3 Formulate the reduced equations of motion . 344
24.4 Evaluate the equations of motion . 346

25 Notation 347
25.1 General . 347
25.2 Orientation of Reference Frames . 347
25.3 Vectors and Vector Differentiation . 348
25.4 Angular and Translational Kinematics . 348
25.5 Constraints . 349
25.6 Mass Distribution . 349
25.7 Force, Moment, and Torque . 349
25.8 Generalized Forces . 350
25.9 Unconstrained Equations of Motion . 350
25.10 Equations of Motion with Nonholonomic Constraints . 351
25.11 Equations of Motion with Holonomic Constraints . 351
25.12 Energy and Power . 351
25.13 Lagrange’s method . 352
25.14 Figure Sign Conventions . 352

26 References 355

27 Prior Versions 357

28 Lecture Videos 359

Bibliography 361

v

vi

Learn Multibody Dynamics

Last Updated: Apr 02, 2024
Version: 0.2.dev0+f45306d

This online book aims to teach multibody dynamics using interactive code woven into the text. It follows the organization
and methods presented in [Kane1985] and can be thought of a retelling of many topics in the book. Each page can
be downloaded as a Python script or Jupyter Notebook. The book is also available in PDF format. This book is used
primarily as a companion resource for TU Delft’s Multibody Dynamics course taught by Jason K. Moore but it is designed
to standalone from the course.

TABLE OF CONTENTS 1

https://python.org
https://jupyter.org
https://moorepants.github.io/me41055
https://www.moorepants.info

Learn Multibody Dynamics

2 TABLE OF CONTENTS

CHAPTER

ONE

INTRODUCTION

1.1 What You Will Learn

• How to formulate the equations of motion for a set of interacting rigid bodies, i.e. a multibody system.
• How to manage and incorporate kinematic constraints.
• How to simulate a multibody system.
• How to visualize the motion of a multibody system in 2D and 3D.
• How to interpret the behavior of multibody systems.

1.2 Prerequisites

• Linear algebra
• Vector calculus
• Calculus based physics
• Statics
• Dynamics
• Introductory numerical methods
• Introductory scientific computing

1.3 Purpose

The goal of this text is to help you learn multibody dynamics via a mixture of computation and traditional mathematical
presentation. Most existing textbooks on the subject are either purely mathematical and problems are solved by pencil
and paper or there are computational elements that are tacked on rather than integrated. I hope to weave the two much
more fluidly here so that you can learn the principles of multibody dynamics through computing.
This text is less about teaching deep theory in multibody dynamics and more about application and doing. After following
the text and practicing, you should be able to correctly model, simulate, and visualize multibody dynamic systems so that
you can use them as a tool to answer scientific questions and solve engineering problems.

3

https://en.wikipedia.org/wiki/Multibody_system

Learn Multibody Dynamics

1.4 Choice of dynamics formalism

To teach multibody dynamics, one must choose a formalism for notation and deriving the equations of motion. There are
numerous methods for doing so, from Newton and Euler’s to Lagrange and Hamilton’s to Jain and Featherstone’s. Here
I use an approach primarily derived from Thomas R. Kane and David Levinson in their 1985 book “Dynamics, Theory
and Application” [Kane1985]. The notation offers a precise way to track all of the nuances in multibody dynamics
bookkeeping and a realization of the equations of motion that obviates having to introduce virtual motion concepts and
that handles kinematic constraints without the need of Lagrange multipliers.

1.5 Choice of programming language

With the goal of teaching through computation, it means I need to also choose a programming language. There are many
programming languages well suited to multibody dynamics computation, but I select Python for several reasons: 1) Python
is open source and freely available for use, 2) Python is currently one, if not the, most popular programming language in
the world, 3) the scientific libraries available in Python are voluminous and widely used in academia and industry, and 4)
Python has SymPy which provides a foundation for computer aided-algebra and calculus.

1.6 History

The primary presentation of multibody dynamics in this text is based on the presentation I and my fellow graduate students
received in the graduate Multibody Dynamics course taught byMont Hubbard and the late Fidelis O. Eke at the University
of California, Davis in the early 2000’s. Profs. Hubbard and Eke taught the course from the late 80s or early 90s until they
retired in 2013 (Prof. Hubbard) and 2016 (Prof. Eke). The 10-week course was based on Thomas R. Kane’s and David
A. Levinson’s 1985 book “Dynamics, Theory and Application” and followed the book and companion computational
materials closely. Prof. Eke was a PhD student of Thomas R. Kane at Stanford and Prof. Hubbard adopted Prof. Kane’s
approach to dynamics after moving to UC Davis from Stanford1. I helped with Prof. Eke’s 2015 course and taught the
course in 2017 and 2019 at UC Davis and this text is a continuation of the notes and materials I developed based on Profs.
Hubbard and Eke’s notes and materials which now includes some elements of TU Delft’s past multibody dynamics course.
When I took the UC Davis course in 2006 as a graduate student, I naively decided to derive and analyze the nonlinear and
linear Carvallo-Whipple bicycle model [Meijaard2007] as my course project2. Fortunately, another student visiting from
Aachen University, Thomas Engelhardt, also choose the same model and his success finally helped me squash the bugs in
my formulation. Luke Peterson, Gilbert Gede, and Angadh Nanjangud subsequently joined Hubbard and Eke’s labs and
with Luke’s lead we were sucked into the world of open source scientific software. At that time, Python’s use by scientists
and engineers began to gain traction and we fortunately jumped on the bandwagon. We had become quite frustrated
with the black box approach of the commercial software tools most engineers used at that time, this included the tool
Autolev that was developed by Kane’s collaborators for the automation of multibody dynamics modeling. To remedy this
frustration, Luke wrote the first version of PyDy as a Google Summer of Code participant in 2009. Gilbert followed
him by implementing a new version as SymPy Mechanics in 2011 also as a Google Summer of Code participant. We
use Gilbert’s, now modified and extended, implementation in this text. Combined with the power of SymPy and Jupyter
Notebooks (IPython Notebooks back then), SymPy Mechanics provides a computational tool that is especially helpful for
learning and teaching multibody dynamics. It is also equally useful for advanced modeling in research and industry.
I have stewarded and developed the software as well as taught and researched with it over the last decade with the help
of a long list of contributors. This text is a presentation of the methods and lessons learned from over the years of doing
multibody dynamics with open source Python software tools.

1 The project is shared at https://github.com/moorepants/MAE-223
2 Mont was working on a skateboard dynamics model in the late 70s and presented his model to an audience that included Thomas Kane. As the

story goes, Prof. Kane approached Mont after the lecture to privately tell him his dynamics model was incorrect. Mont then took it upon himself to
learn Kane’s approach to dynamics so that his future models would be less likely to have such errors.

4 Chapter 1. Introduction

https://en.wikipedia.org/wiki/Newton%E2%80%93Euler_equations
https://en.wikipedia.org/wiki/Lagrangian_mechanics
https://en.wikipedia.org/wiki/Hamiltonian_mechanics
https://en.wikipedia.org/wiki/Featherstone%27s_algorithm
https://en.wikipedia.org/wiki/Thomas_R._Kane
https://en.wikipedia.org/wiki/Lagrange_multiplier
http://www.python.org
http://www.sympy.org
https://moorepants.github.io/mae223/2017/
https://moorepants.github.io/mae223/
https://github.com/hazelnusse/pydy
https://en.wikipedia.org/wiki/Google_Summer_of_Code
https://docs.sympy.org/latest/modules/physics/mechanics/index.html
https://github.com/moorepants/MAE-223

Learn Multibody Dynamics

1.7 Acknowledgements

Wouter Wolfslag contributed the “Equations of Motion with the Lagrange Method” chapter, “Alternatives for Represent-
ing Orientation” section, and reviewed updates for version 0.2. Peter Stahlecker and Jan Heinen provided page-by-page
review of the text while drafting version 0.1. Peter did the same for version 0.2. Arthur Ryman contributed edits to
the first version. Their feedback has helped improve the text in many ways. We also thank the students of TU Delft’s
Multibody Dynamics course who test the materials while learning.
These are the primary contributors to the SymPy Mechanics software presented in the text, in approximate order of first
contribution:

• Dr. Luke Peterson, 2009
• Dr. Gilbert Gede, 2011
• Dr. Angadh Nanjangud, 2012
• Tarun Gaba, 2013
• Oliver Lee, 2013
• Dr. Chris Dembia, 2013
• Jim Crist, 2014
• Sahil Shekhawat, 2015
• James McMillan, 2016
• Nikhil Pappu, 2018
• Sudeep Sidhu, 2020
• Abhinav Kamath, 2020
• Timo Stienstra, 2022
• Dr. Sam Brockie, 2023

SymPy Mechanics is built on top of SymPy, whose 1000+ contributors have also greatly helped SymPy Mechanics be
what it is. Furthermore, the software sits on the top of a large ecosystem of open source software written by thousands
and thousands of contributors who we owe for the solid foundation.

1.8 Tools Behind the Book

I write the contents in plain text using the reStructuredText markup language for processing by Sphinx. The mathematics
are rendered with MathJax in the HTML version. I use the Jupyter Sphinx extension which executes the code in each
chapter as if it were a Jupyter notebook and embeds the Jupyter generated outputs into the resulting HTML page. The
extension also converts each chapter into a Python script and Jupyter notebook for download. I use the Material Sphinx
Theme and sphinx-togglebutton for the dropdown information boxes. I host the source for the book on Github, where I
use Github Actions to build the website and push it to a Github Pages host using ghp-import. I use Github’s issue tracker
and pull request tools to manage tasks and changes. The figures are drawn with a Wacom One tablet and the Xournal++
application.

1.7. Acknowledgements 5

https://github.com/sympy/sympy/blob/master/AUTHORS
https://en.wikipedia.org/wiki/ReStructuredText
https://www.sphinx-doc.org
https://www.mathjax.org
https://github.com/jupyter/jupyter-sphinx
https://github.com/bashtage/sphinx-material
https://github.com/bashtage/sphinx-material
https://github.com/executablebooks/sphinx-togglebutton
https://github.com
https://github.com/c-w/ghp-import
https://xournalpp.github.io

Learn Multibody Dynamics

6 Chapter 1. Introduction

CHAPTER

TWO

LICENSE

The text, figures, and code is licensed under the Creative Commons Attribution 4.0 License (CC-BY 4.0). If you reuse
the materials under the terms of the license you will also need to include the following citation to this work:
Moore, J. K., “Learn Multibody Dynamics”, 2022, https://moorepants.github.io/learn-multibody-dynamics/
Text, figures, and code have been incorporated from the following resources and their licenses are included below:

1. Moore, Dembia, Crist, Nwanna, Milam, Wang, Gaba, Gede, McMurry. PyDy “Human Standing Tutorial”, 2014,
https://github.com/pydy/pydy-tutorial-human-standing CC-BY 4.0.

Attribution 4.0 International

===

Creative Commons Corporation ("Creative Commons") is not a law firm and
does not provide legal services or legal advice. Distribution of
Creative Commons public licenses does not create a lawyer-client or
other relationship. Creative Commons makes its licenses and related
information available on an "as-is" basis. Creative Commons gives no
warranties regarding its licenses, any material licensed under their
terms and conditions, or any related information. Creative Commons
disclaims all liability for damages resulting from their use to the
fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and
conditions that creators and other rights holders may use to share
original works of authorship and other material subject to copyright
and certain other rights specified in the public license below. The
following considerations are for informational purposes only, are not
exhaustive, and do not form part of our licenses.

Considerations for licensors: Our public licenses are
intended for use by those authorized to give the public
permission to use material in ways otherwise restricted by
copyright and certain other rights. Our licenses are
irrevocable. Licensors should read and understand the terms
and conditions of the license they choose before applying it.
Licensors should also secure all rights necessary before
applying our licenses so that the public can reuse the
material as expected. Licensors should clearly mark any
material not subject to the license. This includes other CC-
licensed material, or material used under an exception or
limitation to copyright. More considerations for licensors:

(continues on next page)

7

https://moorepants.github.io/learn-multibody-dynamics/
https://github.com/pydy/pydy-tutorial-human-standing

Learn Multibody Dynamics

(continued from previous page)
wiki.creativecommons.org/Considerations_for_licensors

Considerations for the public: By using one of our public
licenses, a licensor grants the public permission to use the
licensed material under specified terms and conditions. If
the licensor's permission is not necessary for any reason--for
example, because of any applicable exception or limitation to
copyright--then that use is not regulated by the license. Our
licenses grant only permissions under copyright and certain
other rights that a licensor has authority to grant. Use of
the licensed material may still be restricted for other
reasons, including because others have copyright or other
rights in the material. A licensor may make special requests,
such as asking that all changes be marked or described.
Although not required by our licenses, you are encouraged to
respect those requests where reasonable. More considerations
for the public:

wiki.creativecommons.org/Considerations_for_licensees

===

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree
to be bound by the terms and conditions of this Creative Commons
Attribution 4.0 International Public License ("Public License"). To the
extent this Public License may be interpreted as a contract, You are
granted the Licensed Rights in consideration of Your acceptance of
these terms and conditions, and the Licensor grants You such rights in
consideration of benefits the Licensor receives from making the
Licensed Material available under these terms and conditions.

Section 1 -- Definitions.

a. Adapted Material means material subject to Copyright and Similar
Rights that is derived from or based upon the Licensed Material
and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring
permission under the Copyright and Similar Rights held by the
Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording,
Adapted Material is always produced where the Licensed Material is
synched in timed relation with a moving image.

b. Adapter's License means the license You apply to Your Copyright
and Similar Rights in Your contributions to Adapted Material in
accordance with the terms and conditions of this Public License.

c. Copyright and Similar Rights means copyright and/or similar rights
closely related to copyright including, without limitation,
performance, broadcast, sound recording, and Sui Generis Database
Rights, without regard to how the rights are labeled or
categorized. For purposes of this Public License, the rights
specified in Section 2(b)(1)-(2) are not Copyright and Similar
Rights.

(continues on next page)

8 Chapter 2. License

Learn Multibody Dynamics

(continued from previous page)
d. Effective Technological Measures means those measures that, in the

absence of proper authority, may not be circumvented under laws
fulfilling obligations under Article 11 of the WIPO Copyright
Treaty adopted on December 20, 1996, and/or similar international
agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or
any other exception or limitation to Copyright and Similar Rights
that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database,
or other material to which the Licensor applied this Public
License.

g. Licensed Rights means the rights granted to You subject to the
terms and conditions of this Public License, which are limited to
all Copyright and Similar Rights that apply to Your use of the
Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights
under this Public License.

i. Share means to provide material to the public by any means or
process that requires permission under the Licensed Rights, such
as reproduction, public display, public performance, distribution,
dissemination, communication, or importation, and to make material
available to the public including in ways that members of the
public may access the material from a place and at a time
individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright
resulting from Directive 96/9/EC of the European Parliament and of
the Council of 11 March 1996 on the legal protection of databases,
as amended and/or succeeded, as well as other essentially
equivalent rights anywhere in the world.

k. You means the individual or entity exercising the Licensed Rights
under this Public License. Your has a corresponding meaning.

Section 2 -- Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License,
the Licensor hereby grants You a worldwide, royalty-free,
non-sublicensable, non-exclusive, irrevocable license to
exercise the Licensed Rights in the Licensed Material to:

a. reproduce and Share the Licensed Material, in whole or
in part; and

b. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where
Exceptions and Limitations apply to Your use, this Public
License does not apply, and You do not need to comply with

(continues on next page)

9

Learn Multibody Dynamics

(continued from previous page)
its terms and conditions.

3. Term. The term of this Public License is specified in Section
6(a).

4. Media and formats; technical modifications allowed. The
Licensor authorizes You to exercise the Licensed Rights in
all media and formats whether now known or hereafter created,
and to make technical modifications necessary to do so. The
Licensor waives and/or agrees not to assert any right or
authority to forbid You from making technical modifications
necessary to exercise the Licensed Rights, including
technical modifications necessary to circumvent Effective
Technological Measures. For purposes of this Public License,
simply making modifications authorized by this Section 2(a)
(4) never produces Adapted Material.

5. Downstream recipients.

a. Offer from the Licensor -- Licensed Material. Every
recipient of the Licensed Material automatically
receives an offer from the Licensor to exercise the
Licensed Rights under the terms and conditions of this
Public License.

b. No downstream restrictions. You may not offer or impose
any additional or different terms or conditions on, or
apply any Effective Technological Measures to, the
Licensed Material if doing so restricts exercise of the
Licensed Rights by any recipient of the Licensed
Material.

6. No endorsement. Nothing in this Public License constitutes or
may be construed as permission to assert or imply that You
are, or that Your use of the Licensed Material is, connected
with, or sponsored, endorsed, or granted official status by,
the Licensor or others designated to receive attribution as
provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not
licensed under this Public License, nor are publicity,
privacy, and/or other similar personality rights; however, to
the extent possible, the Licensor waives and/or agrees not to
assert any such rights held by the Licensor to the limited
extent necessary to allow You to exercise the Licensed
Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this
Public License.

3. To the extent possible, the Licensor waives any right to
collect royalties from You for the exercise of the Licensed
Rights, whether directly or through a collecting society
under any voluntary or waivable statutory or compulsory
licensing scheme. In all other cases the Licensor expressly

(continues on next page)

10 Chapter 2. License

Learn Multibody Dynamics

(continued from previous page)
reserves any right to collect such royalties.

Section 3 -- License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the
following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified
form), You must:

a. retain the following if it is supplied by the Licensor
with the Licensed Material:

i. identification of the creator(s) of the Licensed
Material and any others designated to receive
attribution, in any reasonable manner requested by
the Licensor (including by pseudonym if
designated);

ii. a copyright notice;

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of
warranties;

v. a URI or hyperlink to the Licensed Material to the
extent reasonably practicable;

b. indicate if You modified the Licensed Material and
retain an indication of any previous modifications; and

c. indicate the Licensed Material is licensed under this
Public License, and include the text of, or the URI or
hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any
reasonable manner based on the medium, means, and context in
which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or
hyperlink to a resource that includes the required
information.

3. If requested by the Licensor, You must remove any of the
information required by Section 3(a)(1)(A) to the extent
reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter's
License You apply must not prevent recipients of the Adapted
Material from complying with this Public License.

Section 4 -- Sui Generis Database Rights.

(continues on next page)

11

Learn Multibody Dynamics

(continued from previous page)
Where the Licensed Rights include Sui Generis Database Rights that
apply to Your use of the Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right
to extract, reuse, reproduce, and Share all or a substantial
portion of the contents of the database;

b. if You include all or a substantial portion of the database
contents in a database in which You have Sui Generis Database
Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share
all or a substantial portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not
replace Your obligations under this Public License where the Licensed
Rights include other Copyright and Similar Rights.

Section 5 -- Disclaimer of Warranties and Limitation of Liability.

a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.

b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.

c. The disclaimer of warranties and limitation of liability provided
above shall be interpreted in a manner that, to the extent
possible, most closely approximates an absolute disclaimer and
waiver of all liability.

Section 6 -- Term and Termination.

a. This Public License applies for the term of the Copyright and
Similar Rights licensed here. However, if You fail to comply with
this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under
(continues on next page)

12 Chapter 2. License

Learn Multibody Dynamics

(continued from previous page)
Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided
it is cured within 30 days of Your discovery of the
violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any
right the Licensor may have to seek remedies for Your violations
of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the
Licensed Material under separate terms or conditions or stop
distributing the Licensed Material at any time; however, doing so
will not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
License.

Section 7 -- Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different
terms or conditions communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the
Licensed Material not stated herein are separate from and
independent of the terms and conditions of this Public License.

Section 8 -- Interpretation.

a. For the avoidance of doubt, this Public License does not, and
shall not be interpreted to, reduce, limit, restrict, or impose
conditions on any use of the Licensed Material that could lawfully
be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is
deemed unenforceable, it shall be automatically reformed to the
minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License
without affecting the enforceability of the remaining terms and
conditions.

c. No term or condition of this Public License will be waived and no
failure to comply consented to unless expressly agreed to by the
Licensor.

d. Nothing in this Public License constitutes or may be interpreted
as a limitation upon, or waiver of, any privileges and immunities
that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

===

(continues on next page)

13

Learn Multibody Dynamics

(continued from previous page)
Creative Commons is not a party to its public
licenses. Notwithstanding, Creative Commons may elect to apply one of
its public licenses to material it publishes and in those instances
will be considered the “Licensor.” The text of the Creative Commons
public licenses is dedicated to the public domain under the CC0 Public
Domain Dedication. Except for the limited purpose of indicating that
material is shared under a Creative Commons public license or as
otherwise permitted by the Creative Commons policies published at
creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark "Creative Commons" or any other trademark or logo
of Creative Commons without its prior written consent including,
without limitation, in connection with any unauthorized modifications
to any of its public licenses or any other arrangements,
understandings, or agreements concerning use of licensed material. For
the avoidance of doubt, this paragraph does not form part of the
public licenses.

Creative Commons may be contacted at creativecommons.org.

14 Chapter 2. License

CHAPTER

THREE

INSTALL THE SOFTWARE

If you would like to run the software on your own computer, follow these instructions which recommend the use of
a Conda-based installation process. The process below describes setting up a new base environment with the needed
software installed.

3.1 1) Miniconda

Miniconda is a stripped down version of Anaconda so that you can install only what you desire. If you already have
Miniconda (or Anaconda) on your computer, you can skip this step or delete your prior Miniconda (or Anaconda) folder
on your computer to uninstall it. Download Miniconda for your operating system:
https://docs.conda.io/en/latest/miniconda.html
Install as a user, not an administrator, when asked. This will install the package manager conda and configure your
computer to use the Python installed with Miniconda when you open a terminal or command prompt.

3.2 2) Create and Activate an Environment

Open either the terminal (Linux/Mac) or the (Anaconda) command prompt (Windows) and type the following series of
commands followed each by the <enter> key to execute the commands.
Create the environment with:

conda create -c conda-forge -n learn-multibody-dynamics python=3.10

The -c conda-forge flag installs the packages fromConda Forge. Conda Forge is a community maintained collection
of compatible software packages and offers a larger number of packages than the default configuration.
Now activate the environment:

conda activate learn-multibody-dynamics

15

https://en.wikipedia.org/wiki/Conda_(package_manager)
https://docs.conda.io/en/latest/miniconda.html
https://conda-forge.org/

Learn Multibody Dynamics

3.3 3) Install Packages

Now you can install the packages that are required for executing the code in this book with this command:

conda install -c conda-forge ipympl ipython jupyter notebook matplotlib numpy␣
↪→pythreejs "scikits.odes" scipy "sympy>=1.11"

3.4 4) Open Jupyter Notebook

To check that everything works, type the command to open Jupyter:

jupyter notebook

Jupyter should open in your web browser and you should be able to run the scripts and notebooks found on the other
pages.

3.5 Software Versions

This website was built with the following software versions:

import IPython
IPython.__version__

'8.15.0'

import jupyter_sphinx
jupyter_sphinx.__version__

'0.5.3'

import matplotlib
matplotlib.__version__

'3.7.3'

import notebook
notebook.__version__

'7.0.8'

import numpy
numpy.__version__

'1.24.4'

import platform
platform.python_version()

16 Chapter 3. Install the Software

Learn Multibody Dynamics

'3.10.14'

import pythreejs._version
pythreejs._version.__version__

'2.4.2'

import pkg_resources
pkg_resources.get_distribution("scikits.odes").version

'2.7.0'

import scipy
scipy.__version__

'1.11.4'

import sphinx
sphinx.__version__

'7.2.6'

import sphinx_material
sphinx_material.__version__

'0.0.36'

import sphinx_togglebutton
sphinx_togglebutton.__version__

'0.3.2'

import sympy
sympy.__version__

'1.11.1'

3.5. Software Versions 17

Learn Multibody Dynamics

18 Chapter 3. Install the Software

CHAPTER

FOUR

JUPYTER AND PYTHON

Note: You can download this example as a Python script: jupyter-python.py or Jupyter notebook:
jupyter-python.ipynb.

4.1 Learning Objectives

After completing this chapter readers will be able to:
• Run the Jupyter notebook software
• Use magic commands in the Jupyter notebook
• Create basic data types in Python
• Create and use Python functions
• Import Python modules

4.2 Introduction

The following is a brief introduction to Python and how to use Python from a Jupyter Notebook. There is much more to
learn than what is covered here. This is just enough to get you started for the purposes of this book. You will need to
seek out the many excellent learning materials online to learn more; some are provided at the end of this chapter.

4.3 The Jupyter Notebook

The Jupyter Notebook is an application that lets you execute code to as well as display text, mathematics, digital media, and
HTML-CSS-Javascript-based outputs. The displayed elements can be embedded directly or generated by the executed
code. This makes the Jupyter Notebook well suited for communicating content that is linked and driven by code. It allows
you to edit the code interactively. Each page of this book is a Jupyter Notebook and can be downloaded and executed
on your computer. Jupyter can execute code from many programming languages. Different kernels are used for each
language and a notebook can, in general, only have a single kernel. This book will use the Python 3 kernel.

19

https://www.jupyter.org

Learn Multibody Dynamics

4.3.1 Using the Notebook

To start the Jupyter notebook application open a terminal (Linux/Mac) or command prompt (Windows), navigate to a
desired working directory then type the following command:

jupyter notebook

A new window will open in your web browser where you can open an existing notebook or start a new one. Notebooks
are organized with cells. You may have a code cell for inputting commands followed by its result cell which contains the
output of the code. You may also have a text cell that contains static content written in Markdown. Markdown allows you
to incorporate simple formatting and even things like mathematical equations using LaTeX notation, e.g. a^2 displays
as a2. The cell type can be changed using a Jupyter drop-down menu.
There is the menu bar above for navigating a notebook but you will find the following keyboard shortcuts helpful:

• Enter : Create a new line with in cell
• Shift + Enter : Execute cell and advance to next cell
• Ctrl + Enter : Execute cell in place (do not advance to the next cell)
• Press esc (command mode) then h to display keyboard shortcuts

At times you might run code that gets stuck in an infinite loop or you might simply want to clear all your workspace
variables and start over. To solve each of these problems you can click on the menu:
Kernel -> Interrupt

then
Kernel -> Restart

4.3.2 Magic Commands

These are special commands that only work in a Juypter notebook or an IPython session, as opposed to the normal Python
interpreter. Magic commands are preceded by a % or %%. You can list available magic commands but using the magic
command lsmagic.

%lsmagic

Available line magics:
%alias %alias_magic %autoawait %autocall %automagic %autosave %bookmark %cat
↪→%cd %clear %code_wrap %colors %conda %config %connect_info %cp %debug
↪→%dhist %dirs %doctest_mode %ed %edit %env %gui %hist %history
↪→%killbgscripts %ldir %less %lf %lk %ll %load %load_ext %loadpy %logoff
↪→%logon %logstart %logstate %logstop %ls %lsmagic %lx %macro %magic %man
↪→%matplotlib %mkdir %more %mv %notebook %page %pastebin %pdb %pdef %pdoc
↪→%pfile %pinfo %pinfo2 %pip %popd %pprint %precision %prun %psearch
↪→%psource %pushd %pwd %pycat %pylab %qtconsole %quickref %recall %rehashx
↪→%reload_ext %rep %rerun %reset %reset_selective %rm %rmdir %run %save %sc
↪→%set_env %store %sx %system %tb %time %timeit %unalias %unload_ext %who
↪→%who_ls %whos %xdel %xmode

Available cell magics:
%%! %%HTML %%SVG %%bash %%capture %%code_wrap %%debug %%file %%html %
↪→%javascript %%js %%latex %%markdown %%perl %%prun %%pypy %%python %%python2␣
↪→ %%python3 %%ruby %%script %%sh %%svg %%sx %%system %%time %%timeit %
↪→%writefile

(continues on next page)

20 Chapter 4. Jupyter and Python

https://en.wikipedia.org/wiki/Markdown
https://en.wikipedia.org/wiki/LaTeX

Learn Multibody Dynamics

(continued from previous page)

Automagic is ON, % prefix IS NOT needed for line magics.

For example %whos will show the variables available in your namespace:

a = 5

%whos

Variable Type Data/Info

a int 5

4.3.3 Need Help?

In case you’re lost help isn’t far. The following commands should provide assistance.
? displays an overview of the features available when typing in code cells in Jupyter notebooks (the cells are parsed by
the IPython Python interpreter when using the Python kernel):

?

A quick reference for the special commands in Jupyter code cells can be viewed with:

%quickref

For details about any Python object in the namespace, append a ? to the variable or function (without ()). For example,
help for the round() function can be found like so:

round?

4.4 Python

Python has become one of the world’s most popular programming languages. It is open source, free to use, and well suited
for scientific and engineering programming needs. The following gives a brief introduction to the basics of Python.

4.4.1 Basic Data Types

Python has core builtin data types. The type() function shows you the type of any Python object. For example, here
are the types of some integers, floating point numbers, and strings:

a = 5
b = 5.0
c = float(5)
d = 'dee'
e = 'e'
f = 2+3j
g = True

type(a), type(b), type(c), type(d), type(e), type(f), type(g)

4.4. Python 21

https://www.python.org

Learn Multibody Dynamics

(int, float, float, str, str, complex, bool)

4.4.2 Data Structures

Python offers several builtin data structures for grouping and organizing objects. Lists, tuples, and dictionaries are the
most commonly used.

Lists

A list is a versatile container that holds objects in the order given. Lists are typically used to group similar items but may
contain heterogeneous data types.

empty_list = []

string_list = ['lions', 'tigers', 'bears', 'sharks', 'hamsters']

int_list = [0, 1, 2, 3, 4]

int_list2 = list(range(5,10))

list_from_variables = [a, b, c, d, e]

list_of_lists = [empty_list,
string_list,
list_from_variables,
int_list,
int_list2]

Each of these can be displayed:

empty_list

[]

string_list

['lions', 'tigers', 'bears', 'sharks', 'hamsters']

int_list

[0, 1, 2, 3, 4]

int_list2

[5, 6, 7, 8, 9]

list_from_variables

[5, 5.0, 5.0, 'dee', 'e']

22 Chapter 4. Jupyter and Python

https://docs.Python.org/3/library/stdtypes.html#list
https://docs.Python.org/3/library/stdtypes.html#tuple
https://docs.Python.org/3/library/stdtypes.html#mapping-types-dict

Learn Multibody Dynamics

list_of_lists

[[],
['lions', 'tigers', 'bears', 'sharks', 'hamsters'],
[5, 5.0, 5.0, 'dee', 'e'],
[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]]

Elements of a list are accessible by their index.

Warning: Beware that Python uses zero-based numbering, i.e. the first index value is 0.

string_list[0]

'lions'

Slices can be used to extract a contiguous subset:

string_list[1:4]

['tigers', 'bears', 'sharks']

Or subset patterns. This extracts every 2nd element:

int_list[::2]

[0, 2, 4]

To access an item in a nested list use successive square brackets:

list_of_lists[1][4]

'hamsters'

Lists are mutable, meaning after a list is created we can change, add, or remove elements. Here are several ways to modify
a list:

int_list[2] = 222

int_list.append(5)

string_list.remove('lions')

list_from_variables.extend(int_list)

Note that the existing lists have been modified in-place:

int_list

[0, 1, 222, 3, 4, 5]

4.4. Python 23

https://en.wikipedia.org/wiki/Zero-based_numbering

Learn Multibody Dynamics

string_list

['tigers', 'bears', 'sharks', 'hamsters']

list_from_variables

[5, 5.0, 5.0, 'dee', 'e', 0, 1, 222, 3, 4, 5]

Tuples

Tuples share similarities with lists. The primary difference between a list and tuple is that tuples are not mutable. A
tuple is good for organizing related data that may be of different types. Note that tuples are defined with parentheses, (),
rather than square brackets.

joe_blow = (32, 'tall', 'likes hats')
joe_blow

(32, 'tall', 'likes hats')

Indexing works the same as lists:

joe_blow[1]

'tall'

Unlike lists, tuples are immutable. They cannot be changed once defined. Trying some of the mutating methods of lists
results in errors on tuples:

joe_blow.append('married')

AttributeError Traceback (most recent call last)
Cell In[24], line 1
----> 1 joe_blow.append('married')

AttributeError: 'tuple' object has no attribute 'append'

joe_blow[2] = 'not really a fan of hats'

TypeError Traceback (most recent call last)
Cell In[25], line 1
----> 1 joe_blow[2] = 'not really a fan of hats'

TypeError: 'tuple' object does not support item assignment

In Python, a function can return multiple values. These multiple outputs are packed into a tuple. Tuple unpacking assigns
individual elements of a tuple to separate variables.

pets = ('elephant', 'cow', 'rock')

pet1, pet2, pet3 = pets

(continues on next page)

24 Chapter 4. Jupyter and Python

Learn Multibody Dynamics

(continued from previous page)

pet1

'elephant'

A peculiar thing about tuples in Python is defining a single element tuple. Note the trailing comma. This is necessary for
Python to know you want a one-element tuple.

tuple_with_one_item = pet1,

tuple_with_one_item

('elephant',)

Dictionaries

A dictionary is an unordered set of key: value pairs. Much like a language dictionary where you look up a word and get
its definition, in a Python dictionary you look up a key and get its value.
Any immutable object can be used as a key, any object can be a value. For example, here are strings as both keys and
values:

dictionary0 = {'key1': 'value1', 'key2': 'value2', 'key3': 'value3'}
dictionary0

{'key1': 'value1', 'key2': 'value2', 'key3': 'value3'}

or integers can be used as keys:

dictionary1 = {1: 'value1', 2: 'value2', 3: 'value3'}
dictionary1

{1: 'value1', 2: 'value2', 3: 'value3'}

The keys and values can be extracted separately using .keys() and .values() and converting to a list:

list(dictionary1.keys())

[1, 2, 3]

list(dictionary1.values())

['value1', 'value2', 'value3']

Individual items can be extracted with square brackets and the key:

cylinder = {'mass': 50, 'base': 10, 'height': 100}
cylinder['mass']

50

The zip() function is a convenient way to help generate a dictionary. It takes sequence objects and combines them into
a list of tuples. We can subsequently use the list of four-element tuples to create a dictionary.

4.4. Python 25

Learn Multibody Dynamics

keys = ['mass01', 'inertia01', 'mass02', 'inertia02']
values = [10, 1, 50, 5]
dict(zip(keys, values))

{'mass01': 10, 'inertia01': 1, 'mass02': 50, 'inertia02': 5}

4.4.3 Functions

Python does not use braces, {}, or end statements to separate blocks of code. Rather, code blocks are initialized with
colon, :, and defined by their indentation. It is convention to use four spaces (not tabs) for each level of indentation.
Functions are defined and used like so:

def abs_value(A):
if A < 0:

A = -A
return A

abs_value(-100)

100

abs_value(123)

123

This function returns two results:

def long_div(dividend, divisor):
quotient = dividend // divisor # // : floor division
remainder = dividend % divisor # % : modulo
return quotient, remainder

Now you can use the function:

a = 430
b = 25

quo, rem = long_div(a, b)

quo, rem

(17, 5)

print() and .format() can be used to make custom text to display:

msg = '{} divided {} is {} remainder {}'.format(a, b, quo, rem)
print(msg)

430 divided 25 is 17 remainder 5

26 Chapter 4. Jupyter and Python

Learn Multibody Dynamics

4.4.4 Modules

Modules add additional functionality not present in the default namespace of Python. Some modules are included with
Python (builtin modules) and some are provided by other software packages and libraries you download and install. For
example, the builtinsysmodule provides access to system-specific parameters and functions. You can check what Python
version you are currently using by first importing the sys module and then accessing the .version variable:

import sys

print(sys.version)

3.10.14 | packaged by conda-forge | (main, Mar 20 2024, 12:45:18) [GCC 12.3.0]

You can also import the version variable to have it included in the current namespace:

from sys import version

print(version)

3.10.14 | packaged by conda-forge | (main, Mar 20 2024, 12:45:18) [GCC 12.3.0]

You will be using SymPy, NumPy, SciPy, and matplotlib further along in this book. These packages will consistently be
imported like so:

import sympy as sm
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt

This will allow you to keep the namespaces separate so that there are no variable name clashes. For example, SymPy,
NumPy, and SciPy all have trigonometric functions:

sm.cos(12.0)

0.843853958732492 (4.1)

np.cos(12.0)

0.8438539587324921

sp.cos(12.0)

0.8438539587324921

and there may be times when you want to use more than one version of cos() in a single namespace.

4.4. Python 27

Learn Multibody Dynamics

4.5 Learn More

4.5.1 More Jupyter

There are many introductory resources for learning to use Jupyter which can be found with search engines. As exam-
ples, this RealPython introduction is a good start (ignore the installation part, as you have it installed already from the
instructions in this book):
https://realPython.com/jupyter-notebook-introduction/
This 7 minute video also gives the basics:

4.5.2 More Python

There are literally thousands of Python learning materials freely available on the web that fit many different needs. Here
are a few recommendations for core Python for beginners:

• Allen Downey’s book “ThinkPython”: https://greenteapress.com/wp/think-python-2e
• Google’s Python Class: https://developers.google.com/edu/python/
• The official Python tutorial: https://docs.Python.org/3/tutorial

28 Chapter 4. Jupyter and Python

https://realPython.com/jupyter-notebook-introduction/
https://greenteapress.com/wp/think-python-2e
https://developers.google.com/edu/python/
https://docs.Python.org/3/tutorial

CHAPTER

FIVE

SYMPY

Note: You can download this example as a Python script: sympy.py or Jupyter notebook: sympy.ipynb.

5.1 Learning Objectives

After completing this chapter readers will be able to:
• Write mathematical expressions with symbols and functions using SymPy.
• Print different forms of expressions and equations with SymPy.
• Differentiate mathematical expressions using SymPy.
• Evaluate mathematical expressions using SymPy.
• Create matrices and do linear algebra using SymPy.
• Solve a linear system of equations with SymPy.
• Simplify mathematical expressions with SymPy.

5.2 Introduction

SymPy is an open source, collaboratively developed computer algebra system (CAS) written in Python. It will be used
extensively for manipulating symbolic expressions and equations. All of the mathematics needed to formulate the equa-
tions of motion of multibody systems can be done with pencil and paper, but the bookkeeping becomes extremely tedious
and error prone for systems with even a small number of bodies. SymPy lets a computer handle the tedious aspects (e.g.
differentiation or solving linear systems of equations) and reduces the errors one would encounter with pencil and paper.
This chapter introduces SymPy and the primary SymPy features we will be using.

29

https://www.sympy.org
https://en.wikipedia.org/wiki/Computer_algebra_system

Learn Multibody Dynamics

5.3 Import and Setup

I will import SymPy as follows throughout this book:

import sympy as sm

Since SymPy works with mathematical symbols it’s nice to view SymPy objects in a format that is similar to the math
in a textbook. Executing init_printing() at the beginning of your Jupyter Notebook will ensure that SymPy
objects render as typeset mathematics. I use the use_latex='mathjax' argument here to disable math png image
generation, but that keyword argument is not necessary.

sm.init_printing(use_latex='mathjax')

5.4 Symbols

Mathematical symbols are created with the symbols() function. A symbol a is created like so:

a = sm.symbols('a')
a

a (5.1)

This symbol object is of the Symbol type:

type(a)

sympy.core.symbol.Symbol

Multiple symbols can be created with one call to symbols() and SymPy recognizes common Greek symbols by their
spelled-out name.

b, t, omega, Omega = sm.symbols('b, t, omega, Omega')
b, t, omega, Omega

(b, t, ω, Ω) (5.2)

Note that the argument provided to symbols() does not need to match the Python variable name it is assigned to.
Using more verbose Python variable names may make code easier to read and understand, especially if there are many
mathematical variables that you need to keep track of. Note that the subscripts are recognized too.

pivot_angle, w2 = sm.symbols('alpha1, omega2')
pivot_angle, w2

(α1, ω2) (5.3)

30 Chapter 5. SymPy

https://docs.sympy.org/latest/modules/interactive.html#sympy.interactive.printing.init_printing
https://docs.sympy.org/latest/modules/core.html#sympy.core.symbol.symbols
https://docs.sympy.org/latest/modules/core.html#sympy.core.symbol.Symbol

Learn Multibody Dynamics

Exercise
Review the SymPy documentation and create symbols q1, q2, . . . , q10 with a very succint call to symbols().

Solution

sm.symbols('q1:11')

(q1, q2, q3, q4, q5, q6, q7, q8, q9, q10) (5.4)

5.5 Undefined Functions

You will also work with undefined mathematical functions in addition to symbols. These will play an important role in
setting up differential equations, where you typically don’t know the function, but only its derivative(s). You can create
arbitrary functions of variables. In this case, you make a function of t. First create the function name:

f = sm.Function('f')
f

f

This is of a type sympy.core.function.UndefinedFunction.

type(f)

sympy.core.function.UndefinedFunction

Now you can create functions of one or more variables like so:

f(t)

f(t) (5.5)

Warning: Due to SymPy’s internal implementations, the type of a function with its argument is not defined as
expected:
type(f(t))

f

This can be confusing if you are checking types.

The same UndefinedFunction can be used to create multivariate functions:

5.5. Undefined Functions 31

https://docs.sympy.org/latest/modules/core.html#sympy.core.symbol.symbols

Learn Multibody Dynamics

f(a, b, omega, t)

f(a, b, ω, t) (5.6)

Exercise
Create a functionH(x, y, z).

Solution

x, y, z = sm.symbols('x, y, z')
sm.Function('H')(x, y, z)

H(x, y, z) (5.7)

5.6 Symbolic Expressions

Now that you havemathematical variables and functions available, they can be used to construct mathematical expressions.
The most basic way to construct expressions is with the standard Python operators +, -, *, /, and **. For example:

expr1 = a + b/omega**2
expr1

a+
b

ω2
(5.8)

An expression will have the type Add, Mul, or Pow:

type(expr1)

sympy.core.add.Add

This is because SymPy stores expressions behind the scenes as a tree. You can inspect this internal representation by
using the srepr() function:

sm.srepr(expr1)

"Add(Symbol('a'), Mul(Symbol('b'), Pow(Symbol('omega'), Integer(-2))))"

This is a visual representation of the tree:

32 Chapter 5. SymPy

https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://docs.sympy.org/latest/modules/printing.html#sympy.printing.repr.srepr

Learn Multibody Dynamics

Add

a Mul

b Pow

omega -2

This representation is SymPy’s “true” representation of the symbolic expression. SymPy can display this expression
in many other representations, for example the typeset mathematical expression you have already seen is one of those
representations. This is important to know, because sometimes the expressions are displayed to you in a way that may be
confusing and checking the srepr() version can help clear up misunderstandings. See the manipulation section of the
SymPy tutorial for more information on this.
Undefined functions can also be used in expressions just like symbols:

expr2 = f(t) + a*omega
expr2

aω + f(t) (5.9)

SymPy has a large number of elementary and special functions. See the SymPy documentation on functions for more
information. For example, here is an expression that uses sin, Abs, and sqrt():

expr3 = a*sm.sin(omega) + sm.Abs(f(t))/sm.sqrt(b)
expr3

a sin (ω) + |f(t)|√
b

(5.10)

Note that Python integers and floats can also be used when constructing expressions:

5.6. Symbolic Expressions 33

https://docs.sympy.org/latest/tutorial/manipulation.html
https://docs.sympy.org/latest/modules/functions/index.html
https://docs.sympy.org/latest/modules/functions/elementary.html#sympy.functions.elementary.trigonometric.sin
https://docs.sympy.org/latest/modules/functions/elementary.html#sympy.functions.elementary.complexes.Abs
https://docs.sympy.org/latest/modules/functions/elementary.html#sympy.functions.elementary.miscellaneous.sqrt

Learn Multibody Dynamics

expr4 = 5*sm.sin(12) + sm.Abs(-1001)/sm.sqrt(89.2)
expr4

5 sin (12) + 105.986768359379 (5.11)

Warning: Be careful with numbers, as SymPy may not intepret them as expected. For example:
1/2*a

0.5a (5.12)

Python does the division before it is multiplied by a, thus a floating point value is created. To fix this you can use
the S() function to “sympify” numbers:
sm.S(1)/2*a

a

2
(5.13)

Or you can ensure the symbol comes first in the division operation:
a/2

a

2
(5.14)

Lastly, an expression of t:

expr5 = t*sm.sin(omega*f(t)) + f(t)/sm.sqrt(t)
expr5

t sin (ωf(t)) + f(t)√
t

(5.15)

Exercise
Create an expression for the normal distribution function:

1√
2πσ

e
(x−µ)2

2σ2 (5.16)

Solution

34 Chapter 5. SymPy

Learn Multibody Dynamics

x, s, m = sm.symbols('x, sigma, mu')
sm.exp((x-m)**2/2/s**2)/sm.sqrt(2*sm.pi*s)

√
2e

(−µ+x)2

2σ2

2
√
π
√
σ

(5.17)

Notice that SymPy does someminor manipulation of the expression, but it is equivalent to the form shown in the prompt.

5.7 Printing

I introduced the srepr() form of SymPy expressions above and mentioned that expressions can have different repre-
sentations. For the following srepr() form:

sm.srepr(expr3)

"Add(Mul(Symbol('a'), sin(Symbol('omega'))), Mul(Pow(Symbol('b'), Rational(-1, 2)),␣
↪→Abs(Function('f')(Symbol('t')))))"

There is also a standard representation accessed with the repr() function:

repr(expr3)

'a*sin(omega) + Abs(f(t))/sqrt(b)'

This form matches what you typically would type to create the expression and it returns a string. The print() function
will display that string:

print(expr3)

a*sin(omega) + Abs(f(t))/sqrt(b)

SymPy also has a “pretty printer” (pprint()) that makes use of unicode symbols to provide a form that more closely
resembles typeset math:

sm.pprint(expr3)

│f(t)│
a⋅sin(ω) + ──────

√b

Lastly, the following lines show how SymPy expressions can be represented as LaTeX code using sympy.printing.
latex.latex(). The double backslashes are present because double backslashes represent the escape character in
Python strings.

sm.latex(expr3)

'a \\sin{\\left(\\omega \\right)} + \\frac{\\left|{f{\\left(t \\right)}}\\right|}{\\
↪→sqrt{b}}'

5.7. Printing 35

https://docs.sympy.org/latest/modules/printing.html#sympy.printing.pretty.pretty.pretty_print
https://docs.sympy.org/latest/modules/printing.html#sympy.printing.latex.latex
https://docs.sympy.org/latest/modules/printing.html#sympy.printing.latex.latex

Learn Multibody Dynamics

print(sm.latex(expr3))

a \sin{\left(\omega \right)} + \frac{\left|{f{\left(t \right)}}\right|}{\sqrt{b}}

Warning: When you are working with long expressions, which will be the case in this course, there is no need to
print them to the screen. In fact, printing them to the screen make take a long time and fill your entire notebook with
an unreadable mess.

Exercise
Print the normal distribution expression

1√
2πσ

e
(x−µ)2

2σ2 (5.18)

as a LaTeX string inside an equation environment.

Solution

x, s, m = sm.symbols('x, sigma, mu')
print(sm.latex(sm.exp((x-m)**2/2/s**2)/sm.sqrt(2*sm.pi*s),

mode='equation'))

\begin{equation}\frac{\sqrt{2} e^{\frac{\left(- \mu + x\right)^{2}}{2 \sigma^{2}}}}{2␣
↪→\sqrt{\pi} \sqrt{\sigma}}\end{equation}

5.8 Differentiating

One of the most tedious tasks in formulating equations of motion is differentiating complex trigonometric expressions.
SymPy can calculate derivatives effortlessly. The diff() SymPy function takes an undefined function or an expression
and differentiates it with respect to the symbol provided as the second argument:

sm.diff(f(t), t)

d

dt
f(t) (5.19)

All functions and expressions also have a .diff()method which can be used like so (many SymPy functions exist as
standalone functions and methods):

f(t).diff(t)

d

dt
f(t) (5.20)

expr3 is a more complicated expression:

36 Chapter 5. SymPy

https://docs.sympy.org/latest/modules/core.html#sympy.core.function.diff

Learn Multibody Dynamics

expr3

a sin (ω) + |f(t)|√
b

(5.21)

It can be differentiated, for example, with respect to b:

expr3.diff(b)

−|f(t)|
2b

3
2

(5.22)

You can also calculate partial derivatives with respect to successive variables. If you want to first differentiate with
respect to b and then with respect to t as in the following operation:

∂2h(a, ω, t, b)

∂t∂b
(5.23)

where:

h(a, ω, t, b) = a sin (ω) + |f(t)|√
b

(5.24)

then you can use successive arguments to .diff():

expr3.diff(b, t)

−
(
re (f(t)) ddt re (f(t)) + im (f(t)) ddt im (f(t))

)
sign (f(t))

2b
3
2 f(t)

(5.25)

Note that the answer includes real and imaginary components and the signum function.

Warning: SymPy assumes all symbols are complex-valued unless told otherwise. You can attach assumptions to
symbols to force them to be real, positive, negative, etc. For example, compare these three outputs:
h = sm.Function('h')
sm.Abs(h(t)).diff(t)

(
re (h(t)) ddt re (h(t)) + im (h(t)) ddt im (h(t))

)
sign (h(t))

h(t)
(5.26)

h = sm.Function('h', real=True)
sm.Abs(h(t)).diff(t)

sign (h(t)) d
dt
h(t) (5.27)

h = sm.Function('h', real=True, positive=True)
sm.Abs(h(t)).diff(t)

5.8. Differentiating 37

https://en.wikipedia.org/wiki/Sign_function

Learn Multibody Dynamics

d

dt
h(t) (5.28)

Sometimes you may need to add assumptions to variables, but in general it will not be necessary. Read more about
assumptions in SymPy’s guide.

Exercise
Differentiate expr5 above using this operator:

∂2

∂ω∂t
(5.29)

Solution
First show expr5:

expr5

t sin (ωf(t)) + f(t)√
t

(5.30)

The twice partial derivative is:

expr5.diff(t, omega)

−ωtf(t) sin (ωf(t)) d
dt
f(t) + t cos (ωf(t)) d

dt
f(t) + f(t) cos (ωf(t)) (5.31)

or you can chain .diff() calls:

expr5.diff(t).diff(omega)

−ωtf(t) sin (ωf(t)) d
dt
f(t) + t cos (ωf(t)) d

dt
f(t) + f(t) cos (ωf(t)) (5.32)

5.9 Evaluating Symbolic Expressions

SymPy expressions can be evaluated numerically in several ways. The xreplace()method allows substitution of exact
symbols or sub-expressions. First create a dictionary that maps symbols, functions or sub-expressions to the replacements:

repl = {omega: sm.pi/4, a: 2, f(t): -12, b: 25}

This dictionary can then be passed to .xreplace():

38 Chapter 5. SymPy

https://docs.sympy.org/latest/guides/assumptions.html
https://docs.sympy.org/latest/modules/core.html#sympy.core.basic.Basic.xreplace

Learn Multibody Dynamics

expr3.xreplace(repl)

√
2 +

12

5
(5.33)

Notice how the square root and fraction do not automatically reduce to their decimal equivalents. To do so, you must use
the evalf() method. This method will evaluate an expression to an arbitrary number of decimal points. You provide
the number of decimal places and the substitution dictionary to evaluate:

expr3.evalf(n=10, subs=repl)

3.814213562 (5.34)

type(expr3.evalf(n=10, subs=repl))

sympy.core.numbers.Float

Note that this is a SymPy Float object, which is a special object that can have an arbitrary number of decimal places,
for example here is the expression evaluated to 80 decimal places:

expr3.evalf(n=80, subs=repl)

3.814213562373095048801688724209698078569671875376948073176679737990732478462107 (5.35)

To convert this to Python floating point number, use float():

float(expr3.evalf(n=300, subs=repl))

3.81421356237309 (5.36)

type(float(expr3.evalf(n=300, subs=repl)))

float

This value is a machine precision floating point value and can be used with standard Python functions that operate on
floating point numbers.
To obtain machine precision floating point numbers directly and with more flexibility, it is better to use the lambdify()
function to convert the expression to a Python function. When using lambdify(), all symbols and functions should be
converted to numbers so first identify what symbols and functions make up the expression.

expr3

5.9. Evaluating Symbolic Expressions 39

https://docs.sympy.org/latest/modules/core.html#sympy.core.evalf.EvalfMixin.evalf
https://docs.sympy.org/latest/modules/core.html#sympy.core.numbers.Float
https://en.wikipedia.org/wiki/Machine_epsilon
https://docs.sympy.org/latest/modules/utilities/lambdify.html#sympy.utilities.lambdify.lambdify

Learn Multibody Dynamics

a sin (ω) + |f(t)|√
b

(5.37)

ω, a, f(t), and b are all present in the expression. The first argument of lambdify() should be a sequence of all
these symbols and functions and the second argument should be the expression.

eval_expr3 = sm.lambdify((omega, a, f(t), b), expr3)

lambdify() generates a Python function and, in this case, we store that function in the variable eval_expr3. You
can see what the inputs and outputs of the function are with help():

help(eval_expr3)

Help on function _lambdifygenerated:

_lambdifygenerated(omega, a, _Dummy_24, b)
Created with lambdify. Signature:

func(omega, a, f, b)

Expression:

a*sin(omega) + Abs(f(t))/sqrt(b)

Source code:

def _lambdifygenerated(omega, a, _Dummy_24, b):
return a*sin(omega) + abs(_Dummy_24)/sqrt(b)

Imported modules:

This function operates on and returns floating point values, for example:

eval_expr3(3.14/4, 2, -12, 25)

3.81365036221073 (5.38)

The type of lambdify’s return values will be NumPy floats.

type(eval_expr3(3.14/4, 2, -12, 25))

numpy.float64

These floats are interoperable with Python floats for single values (unlike SymPy Floats) but also support arrays of floats.
For example:

eval_expr3(3.14/4, 2, -12, [25, 26, 27])

array([3.81365036, 3.76704398, 3.72305144])

40 Chapter 5. SymPy

https://www.numpy.org

Learn Multibody Dynamics

type(eval_expr3(3.14/4, 2, -12, [25, 26, 27]))

numpy.ndarray

More on NumPy arrays of floats will be introduced in a later chapter.

Warning: Python and NumPy floats can be mixed, but avoid mixing SymPy Floats with either.

Note: This distinction between SymPy Float objects and regular Python and NumPy float objects is important.
In this case, the Python float and the NumPy float are equivalent. The later will compute much faster because arbitrary
precision is not required. In this book, you will almost always want to convert SymPy expressions to machine precision
floating point numbers, so use lambdify().

Exercise
Create a symbolic expression representing Newton’s Law of Universal Gravitation. Use lambdify() to evaluate the
expression for two mass of 5.972E24 kg and 80 kg at a distance of 6371 km apart to find the gravitational force in
Newtons.

Solution

G, m1, m2, r = sm.symbols('G, m1, m2, r')
F = G*m1*m2/r**2
eval_F = sm.lambdify((G, m1, m2, r), F)
eval_F(6.67430E-11, 5.972E24, 80, 6371E3)

785.597874097975 (5.39)

5.10 Matrices

SymPy supports matrices of expressions and linear algebra. Many of the operations needed in multibody dynamics are
more succinctly formulated with matrices and linear algebra. Matrices can be created by passing nested lists to the
Matrix() object. For example:

mat1 = sm.Matrix([[a, 2*a], [b/omega, f(t)]])
mat1

[
a 2a
b
ω f(t)

]
(5.40)

5.10. Matrices 41

https://en.wikipedia.org/wiki/Newton's_law_of_universal_gravitation
https://docs.sympy.org/latest/modules/matrices/dense.html#sympy.matrices.dense.MutableDenseMatrix

Learn Multibody Dynamics

mat2 = sm.Matrix([[1, 2], [3, 4]])
mat2

[
1 2
3 4

]
(5.41)

All matrices are two dimensional and the number of rows and columns, in that order, are stored in the .shape attribute.

mat1.shape

(2, 2) (5.42)

Individual elements of the matrix can be extracted with the bracket notation taking the row and column indices (re-
member Python indexes from 0):

mat1[0, 1]

2a (5.43)

The slice notation can extract rows or columns:

mat1[0, 0:2]

[
a 2a

]
(5.44)

mat1[0:2, 1]

[
2a
f(t)

]
(5.45)

Matrix algebra can be performed. Matrices can be added:

mat1 + mat2

[
a+ 1 2a+ 2
b
ω + 3 f(t) + 4

]
(5.46)

Both the * and the @ operator perform matrix multiplication:

mat1*mat2

[
7a 10a

b
ω + 3f(t) 2b

ω + 4f(t)

]
(5.47)

42 Chapter 5. SymPy

Learn Multibody Dynamics

mat1@mat2

[
7a 10a

b
ω + 3f(t) 2b

ω + 4f(t)

]
(5.48)

Element-by-element multiplication requires the sympy.hadamard_product() function:

sm.hadamard_product(mat1, mat2)

[
a 4a
3b
ω 4f(t)

]
(5.49)

Note that NumPy uses * for element-by-element multiplication and @ for matrix multiplication, so to avoid possible
confusion, use @ for SymPy matrix multiplication.
Differentiation operates on each element of the matrix:

mat3 = sm.Matrix([expr1, expr2, expr3, expr4, expr5])
mat3

a+ b

ω2

aω + f(t)

a sin (ω) + |f(t)|√
b

5 sin (12) + 105.986768359379

t sin (ωf(t)) + f(t)√
t

 (5.50)

mat3.diff(a)

1
ω

sin (ω)
0
0

 (5.51)

mat3.diff(t)

0
d
dtf(t)

(re (f(t)) d
dt re (f(t))+im (f(t)) d

dt im (f(t))) sign (f(t))√
bf(t)

0

ωt cos (ωf(t)) ddtf(t) + sin (ωf(t)) +
d
dt f(t)√

t
− f(t)

2t
3
2

 (5.52)

If you have column vectors v̄ and ū, the (i, j) entries of the Jacobian of v̄ with respect to the entries in vector ū are
found with Jij = ∂vi

∂uj
. The Jacobian matrix of vector (column matrix) can be formed with the jacobian() method.

This calculates the partial derivatives of each element in the vector with respect to a vector (or sequence) of variables.

5.10. Matrices 43

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
https://docs.sympy.org/latest/modules/matrices/matrices.html#sympy.matrices.matrices.MatrixCalculus.jacobian

Learn Multibody Dynamics

mat4 = sm.Matrix([a, b, omega, t])
mat4

a
b
ω
t

 (5.53)

mat3.jacobian(mat4)

1 1
ω2 − 2b

ω3 0
ω 0 a d

dtf(t)

sin (ω) − |f(t)|
2b

3
2

a cos (ω) (re (f(t)) d
dt re (f(t))+im (f(t)) d

dt im (f(t))) sign (f(t))√
bf(t)

0 0 0 0

0 0 tf(t) cos (ωf(t)) ωt cos (ωf(t)) ddtf(t) + sin (ωf(t)) +
d
dt f(t)√

t
− f(t)

2t
3
2

 (5.54)

Exercise
Write your own function that produces a Jacobian given a column matrix of expressions. It should look like:

def jacobian(v, x):
"""Returns the Jacobian of the vector function v with respect to the
vector of variables x."""
fill in your code here
return J_v_x

Show that it gives the same solution as the above .jacobian() method. Do not use the .jacobian() method in
your function.

Solution

def jacobian(v, x):
"""Returns the Jacobian of the vector function v with respect to the
vector of variables x."""
diffs = []
for expr in v:

for var in x:
diffs.append(expr.diff(var))

J_v_x = sm.Matrix(diffs).reshape(len(v), len(x))
return J_v_x

jacobian(mat3, mat4)

44 Chapter 5. SymPy

Learn Multibody Dynamics

1 1
ω2 − 2b

ω3 0
ω 0 a d

dtf(t)

sin (ω) − |f(t)|
2b

3
2

a cos (ω) (re (f(t)) d
dt re (f(t))+im (f(t)) d

dt im (f(t))) sign (f(t))√
bf(t)

0 0 0 0

0 0 tf(t) cos (ωf(t)) ωt cos (ωf(t)) ddtf(t) + sin (ωf(t)) +
d
dt f(t)√

t
− f(t)

2t
3
2

 (5.55)

5.11 Solving Linear Systems

You’ll need to solve linear systems of equations often in this book. SymPy offers a number of ways to do this, but the
best way to do so if you know a set of equations are linear in specific variables is the method described below. First, you
should confirm you have equations of this form:

a11x1 + a12x2 + . . .+ a1nxn + b1 = 0

a21x1 + a22x2 + . . .+ a2nxn + b2 = 0

...
an1x1 + an2x2 + . . .+ annxn + bn = 0

(5.56)

These equations can be put into matrix form:

Ax̄ = b̄ (5.57)

where:

A =

a11 a12 . . . a1n
a21 a22 . . . a2n
.
an1 an2 . . . ann

 , x̄ =

x1
x2
. . .
xn

 , b̄ =

−b1
−b2
. . .
−bn

 (5.58)

x̄, the solution, is found with matrix inversion (if the matrix is invertible):

x̄ = A−1b̄ (5.59)

Taking the inverse is not computationally efficient and potentially numerically inaccurate, so some form of Gaussian
elmination should be used to solve the system.
To solve with SymPy, start with a column matrix of linear expressions:

a1, a2 = sm.symbols('a1, a2')

exprs = sm.Matrix([
[a1*sm.sin(f(t))*sm.cos(2*f(t)) + a2 + omega/sm.log(f(t), t) + 100],
[a1*omega**2 + f(t)*a2 + omega + f(t)**3],

])
exprs

[
a1 sin (f(t)) cos (2f(t)) + a2 +

ω log (t)
log (f(t)) + 100

a1ω
2 + a2f(t) + ω + f3(t)

]
(5.60)

Since we know these two expressions are linear in the a1 and a2 variables, the partial derivatives with respect to those two
variables will return the linear coefficients. The A matrix can be formed in one step with the .jacobian() method:

5.11. Solving Linear Systems 45

https://en.wikipedia.org/wiki/System_of_linear_equations
https://docs.sympy.org/latest/guides/solving/index.html
https://en.wikipedia.org/wiki/Gaussian_elimination
https://en.wikipedia.org/wiki/Gaussian_elimination

Learn Multibody Dynamics

A = exprs.jacobian([a1, a2])
A

[
sin (f(t)) cos (2f(t)) 1

ω2 f(t)

]
(5.61)

The b̄ vector can be formed by setting a1 = a2 = 0, leaving the terms that are not linear in a1 and a2.

b = -exprs.xreplace({a1: 0, a2: 0})
b

[
− ω log (t)

log (f(t)) − 100

−ω − f3(t)

]
(5.62)

The inv() method can compute the inverse of A to find the solution:

A.inv() @ b

 − −ω−f3(t)
−ω2+f(t) sin (f(t)) cos (2f(t)) +

(− ω log (t)
log (f(t))

−100)f(t)
−ω2+f(t) sin (f(t)) cos (2f(t))

−
ω2(− ω log (t)

log (f(t))
−100)

−ω2+f(t) sin (f(t)) cos (2f(t)) +
(−ω−f3(t)) sin (f(t)) cos (2f(t))
−ω2+f(t) sin (f(t)) cos (2f(t))

 (5.63)

But it is best to use the LUsolve() method to perform an LU decomposition Gaussian-Elimination to solve the
system, especially as the dimension of A grows:

A.LUsolve(b)

− ω log (t)

log (f(t))
−100−

−
ω2(− ω log (t)

log (f(t))
−100)

sin (f(t)) cos (2f(t))
−ω−f3(t)

− ω2

sin (f(t)) cos (2f(t))
+f(t)

sin (f(t)) cos (2f(t))

−
ω2(− ω log (t)

log (f(t))
−100)

sin (f(t)) cos (2f(t))
−ω−f3(t)

− ω2

sin (f(t)) cos (2f(t))
+f(t)

 (5.64)

Warning: This method of solving symbolic linear systems is fast, but it can give incorrect answers for:
1. expressions that are not acutally linear in the variables the Jacobian is taken with respect to
2. A matrix entries that would evaluate to zero if simplified or specific numerical values are provided

So only use this method if you are sure your equations are linear and if your A matrix is made up of complex ex-
pressions, watch out for nan results after lambdifying. solve() and linsolve() can also solve linear systems
and they check for linearity and properties of the A matrix. The cost is that they can be extremely slow for large
expressions (which we will have in this book).

Exercise

46 Chapter 5. SymPy

https://docs.sympy.org/latest/modules/matrices/matrices.html#sympy.matrices.matrices.MatrixBase.inv
https://docs.sympy.org/latest/modules/matrices/matrices.html#sympy.matrices.matrices.MatrixBase.LUsolve
https://en.wikipedia.org/wiki/LU_decomposition
https://docs.sympy.org/latest/modules/solvers/solvers.html#sympy.solvers.solvers.solve
https://docs.sympy.org/latest/modules/solvers/solveset.html#sympy.solvers.solveset.linsolve

Learn Multibody Dynamics

Solve the following equations for all of the L’s and then use lambdify() to evaluate the solution for F1 = 13 and
F2 = 32.

−L1 + L2 − L3/
√
2 =0

L3/
√
2 + L4 =F1

−L2 − L5/
√
2 =0

L5/
√
2 =F2

L5/
√
2 + L6 =0

−L4 − L5/
√
2 =0

(5.65)

Solution

L1, L2, L3, L4, L5, L6, F1, F2 = sm.symbols('L1, L2, L3, L4, L5, L6, F1, F2')

exprs = sm.Matrix([
-L1 + L2 - L3/sm.sqrt(2),
L3/sm.sqrt(2) + L4 - F1,
-L2 - L5/sm.sqrt(2),
L5/sm.sqrt(2) - F2,
L5/sm.sqrt(2) + L6,
-L4 -L5/sm.sqrt(2),

])
exprs

−L1 + L2 −
√
2L3

2

−F1 +
√
2L3

2 + L4

−L2 −
√
2L5

2

−F2 +
√
2L5

2√
2L5

2 + L6

−L4 −
√
2L5

2

(5.66)

unknowns = sm.Matrix([L1, L2, L3, L4, L5, L6])

coef_mat = exprs.jacobian(unknowns)
rhs = exprs.xreplace(dict(zip(unknowns, [0]*6)))

sol = coef_mat.LUsolve(rhs)

sm.Eq(unknowns, sol)

L1

L2

L3

L4

L5

L6

 =

F1 + 2F2

F2√
2 (−F1 − F2)

F2

−
√
2F2

F2

 (5.67)

5.11. Solving Linear Systems 47

Learn Multibody Dynamics

eval_sol = sm.lambdify((F1, F2), sol)
eval_sol(13, 32)

array([[77.],
[32.],
[-63.63961031],
[32.],
[-45.254834],
[32.]])

5.12 Simplification

The above result from LUsolve() is a bit complicated. Reproduced here:

a1, a2 = sm.symbols('a1, a2')
exprs = sm.Matrix([

[a1*sm.sin(f(t))*sm.cos(2*f(t)) + a2 + omega/sm.log(f(t), t) + 100],
[a1*omega**2 + f(t)*a2 + omega + f(t)**3],

])
A = exprs.jacobian([a1, a2])
b = -exprs.xreplace({a1: 0, a2: 0})
sol = A.LUsolve(b)

SymPy has some functionality for automatically simplifying symbolic expressions. The function simplify() will
attempt to find a simpler version:

sm.simplify(sol)

 −ωf(t) log (t)+ω log (f(t))+f3(t) log (f(t))−100f(t) log (f(t))
(−ω2+f(t) sin (f(t)) cos (2f(t))) log (f(t))

−ω2(ω log (t)+100 log (f(t)))+(ω+f3(t)) log (f(t)) sin (f(t)) cos (2f(t))
(ω2−f(t) sin (f(t)) cos (2f(t))) log (f(t))

 (5.68)

But you’ll have the best luck at simplifying if you use simplification functions that target the type of expression you
have. The trigsimp() function only attempts trigonometric simplifications, for example:

trig_expr = sm.cos(omega)**2 + sm.sin(omega)**2
trig_expr

sin2 (ω) + cos2 (ω) (5.69)

sm.trigsimp(trig_expr)

1 (5.70)

48 Chapter 5. SymPy

https://docs.sympy.org/latest/modules/matrices/matrices.html#sympy.matrices.matrices.MatrixBase.LUsolve
https://docs.sympy.org/latest/modules/simplify/simplify.html#sympy.simplify.simplify.simplify
https://docs.sympy.org/latest/modules/simplify/simplify.html#sympy.simplify.trigsimp.trigsimp

Learn Multibody Dynamics

Warning: Only attempt simplification on expressions that are several lines of text. Larger expressions become
increasingly computationally intensive to simplify and there is generally no need to do so.

As mentioned earlier, SymPy represents expressions as trees. Symbolic expressions can also be represented as directed
acyclic graphs that contain only one node for each unique expression (unlike SymPy’s trees which may have the same
expression in more than one node). These unique expressions, or “common subexpressions”, can be found with the
cse() function. This function will provide a simpler form of the equations that minimizes the number of operations to
compute the answer. We can count the number of basic operations (additions, multiplies, etc.) using count_ops():

sm.count_ops(sol)

79 (5.71)

We can simplify with cse():

substitutions, simplified = sm.cse(sol)

The substitutions variable contains a list of tuples, where each tuple has a new intermediate variable and the sub-
expression it is equal to.

substitutions[0]

(x0, f(t)) (5.72)

The Eq() class with tuple unpacking (*) can be used to display these tuples as equations:

sm.Eq(*substitutions[0])

x0 = f(t) (5.73)

sm.Eq(*substitutions[1])

x1 =
1

sin (x0) cos (2x0)
(5.74)

sm.Eq(*substitutions[2])

x2 = ω2x1 (5.75)

5.12. Simplification 49

https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://docs.sympy.org/latest/modules/simplify/simplify.html#sympy.simplify.cse_main.cse
https://docs.sympy.org/latest/modules/core.html#sympy.core.function.count_ops
https://docs.sympy.org/latest/modules/core.html#sympy.core.relational.Equality

Learn Multibody Dynamics

sm.Eq(*substitutions[4])

x4 =
−ω − x30 + x2x3

x0 − x2
(5.76)

The simplified variable contains the simplified expression, made up of the intermediate variables.

simplified[0]

[
x1 (−x3 − x4)

x4

]
(5.77)

We can count the number of operations of the simplified version:

num_ops = sm.count_ops(simplified[0])
for sub in substitutions:

num_ops += sm.count_ops(sub[1])
num_ops

22 (5.78)

Exercise
lambdify() has an optional argument cse=True|False that applies common subexpression elimination internally
to simplify the number of operations. Differentiate the base_expr with respect to x 10 times to generate a very long
expression. Create two functions using lambdify(), one with cse=True and one with cse=False. Compare how
long it takes to numerically evaluate the resulting functions using the %timeit magic.

a, b, c, x, y, z = sm.symbols('a, b, c, x, y, z')
base_expr = a*sm.sin(x*x + b*sm.cos(x*y) + c*sm.sin(x*z))

Solution
Differentiate 10 times:

long_expr = base_expr.diff(x, 10)

Create the numerical functions:

eval_long_expr = sm.lambdify((a, b, c, x, y, z), long_expr)
eval_long_expr_cse = sm.lambdify((a, b, c, x, y, z), long_expr, cse=True)

Now time each function:

%%timeit
eval_long_expr(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

50 Chapter 5. SymPy

https://docs.sympy.org/latest/modules/utilities/lambdify.html#sympy.utilities.lambdify.lambdify

Learn Multibody Dynamics

270 µs ± 2.17 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

%%timeit
eval_long_expr_cse(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

16.4 µs ± 82.2 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)

5.13 Learn more

This section only scratches the surface of what SymPy can do. The presented concepts are the basic ones needed for
this book, but getting more familiar with SymPy and what it can do will help. I recommend doing the SymPy Tutorial.
The “Gotchas” section is particularly helpful for common mistakes when using SymPy. The tutorial is part of the SymPy
documentation https://docs.sympy.org, where you will find general information on SymPy.
The tutorial is also available on video:
If you want to ask a question about using SymPy (or search to see if someone else has asked your question), you can do
so at the following places:

• SymPy mailing list: Ask questions via email.
• SymPy Github Discussions: Ask questions via Github.
• Stackoverflow: Ask and search questions on the most popular coding Q&A website.

5.13. Learn more 51

https://docs.sympy.org/latest/tutorial/index.html
https://docs.sympy.org
https://groups.google.com/g/sympy
https://github.com/sympy/sympy/discussions
https://stackoverflow.com/questions/tagged/sympy?tab=Votes

Learn Multibody Dynamics

52 Chapter 5. SymPy

CHAPTER

SIX

ORIENTATION OF REFERENCE FRAMES

Note: You can download this example as a Python script: orientation.py or Jupyter Notebook: orientation.
ipynb.

import sympy as sm
sm.init_printing(use_latex='mathjax')

6.1 Learning Objectives

After completing this chapter readers will be able to:
• Define a reference frame with associated unit vectors.
• Define a direction cosine matrix between two oriented reference frames.
• Derive direction cosine matrices for simple rotations.
• Derive direction cosine matrices for successive rotations.
• Manage orientation and direction cosine matrices with SymPy.
• Rotate reference frames using Euler Angles.

6.2 Reference Frames

In the study of multibody dynamics, we are interested in observing motion of connected and interacting objects in three
dimensional space. This observation necessitates the concept of a frame of reference, or reference frame. A reference
frame is an abstraction which we define as the set of all points in Euclidean space that are carried by and fixed to the
observer of any given state of motion. Practically speaking, it is useful to imagine your eye as an observer of motion.
Your eye can orient itself in 3D space to view the motion of objects from any direction and the motion of objects will
appear differently in the set of points associated with the reference frame attached to your eye depending on your eye’s
orientation.
It is important to note that a reference frame is not equivalent to a coordinate system. Any number of coordinate systems
(e.g., Cartesian or spherical) can be used to describe the motion of points or objects in a reference frame. The coordinate
system offers a system of measurement in a reference frame. We will characterize a reference frame by a right-handed set
of mutually perpendicular unit vectors that can be used to describe its orientation relative to other reference frames and
we will align a Cartesian coordinate system with the unit vectors to allow for easy measurement of points fixed or moving
in the reference frame.

53

https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Right-hand_rule

Learn Multibody Dynamics

6.3 Unit Vectors

Vectors have a magnitude, direction, and sense (±) but notably not a position. Unit vectors have a magnitude of 1. Unit
vectors can be fixed, orientation-wise, to a reference frame. For a reference frame named N we will define the three
mutually perpendicular unit vectors as n̂x, n̂y, n̂z where these right-handed cross products hold:

n̂x × n̂y = n̂z

n̂y × n̂z = n̂x

n̂z × n̂x = n̂y

(6.1)

Note: Unit vectors will be designated using the “hat”, e.g. v̂.

These unit vectors are fixed in the reference frame N . If a second reference frame A is defined, also with its set of
right-handed mutually perpendicular unit vectors âx, ây, âz then we can establish the relative orientation of these two
reference frames based on the angles among the two frames’ unit vectors.

Fig. 6.1: The image on the left and right represent the same set of right-handed mutually perpendicular unit vectors.
Vectors, in general, do not have a position and can be drawn anywhere in the reference frame. Drawing them with their
tails coincident is simply done for convenience.

6.4 Simple Orientations

Starting with two reference frames N and A in which their sets of unit vectors are initially aligned, the A frame can
then be simply oriented about the common parallel z unit vectors of the two frames. We then say “reference frame A is
oriented with respect to reference frameN about the shared z unit vectors through an angle θ. A visual representation of
this orientation looking from the direction of the positive z unit vector is:

54 Chapter 6. Orientation of Reference Frames

https://en.wikipedia.org/wiki/Cross_product

Learn Multibody Dynamics

Fig. 6.2: View of the parallel xy planes of the simply oriented reference frames.

From the above figure these relationships between the â and n̂ unit vectors can be deduced:

âx = cos θn̂x + sin θn̂y + 0n̂z

ây = − sin θn̂x + cos θn̂y + 0n̂z

âz = 0n̂x + 0n̂y + 1n̂z

(6.2)

These equations can also be written in a matrix form:âxây
âz

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

n̂xn̂y
n̂z

 (6.3)

This matrix uniquely describes the orientation between the two reference frames and so we give it its own variable:âxây
âz

 = ACN
n̂xn̂y
n̂z

 (6.4)

This matrix ACN maps vectors expressed in the N frame to vectors expressed in the A frame. This matrix has an
important property, which we will demonstrate with SymPy. Start by creating the matrix:

theta = sm.symbols('theta')

A_C_N = sm.Matrix([[sm.cos(theta), sm.sin(theta), 0],
[-sm.sin(theta), sm.cos(theta), 0],
[0, 0, 1]])

A_C_N

 cos (θ) sin (θ) 0
− sin (θ) cos (θ) 0

0 0 1

 (6.5)

6.4. Simple Orientations 55

Learn Multibody Dynamics

If we’d like the inverse relationship between the two sets of unit vectors and ACN is invertible, then:n̂xn̂y
n̂z

 =
(
ACN

)−1

âxây
âz

 (6.6)

SymPy can find this matrix inverse:

sm.trigsimp(A_C_N.inv())

cos (θ) − sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

 (6.7)

SymPy can also find the transpose of this matrix;

A_C_N.transpose()

cos (θ) − sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

 (6.8)

Notably, the inverse and the transpose are the same here. This indicates that this matrix is a special orthogonal matrix.
All matrices that describe the orientation between reference frames are orthogonal matrices. Following the notation
convention, this holds:

NCA =
(
ACN

)−1
=
(
ACN

)T (6.9)

Exercise
Write ACN for simple rotations about both the shared n̂x and âx and shared n̂y and ây axes, rotating A with respect to
N through angle θ.

Solution
For a x orientation: 1 0 0

0 cos θ sin θ
0 − sin θ cos θ

 (6.10)

For a y orientation: cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (6.11)

56 Chapter 6. Orientation of Reference Frames

https://en.wikipedia.org/wiki/Orthogonal_matrix

Learn Multibody Dynamics

6.5 Direction Cosine Matrices

If now A is oriented relative to N and the pairwise angles between each â and n̂ mutually perpendicular unit vectors
are measured, a matrix for an arbitrary orientation can be defined. For example, the figure below shows the three angles
αxx, αxy, αxz relating âx to each n̂ unit vector.

Fig. 6.3: Three angles relating âx to the unit vectors of N .

Similar to the simple example above, we can write these equations if the αy and αz angles relate the ây and âz unit
vectors to those of N :

âx = cosαxxn̂x + cosαxyn̂y + cosαxzn̂z
ây = cosαyxn̂x + cosαyyn̂y + cosαyzn̂z
âz = cosαzxn̂x + cosαzyn̂y + cosαzzn̂z

(6.12)

Since we are working with unit vectors the cosine of the angle between each pair of vectors is equivalent to the dot product
between the two vectors, so this also holds:

âx = (âx · n̂x)n̂x + (âx · n̂y)n̂y + (âx · n̂z)n̂z
ây = (ây · n̂x)n̂x + (ây · n̂y)n̂y + (ây · n̂z)n̂z
âx = (âz · n̂x)n̂x + (âz · n̂y)n̂y + (âz · n̂z)n̂z

(6.13)

Now the matrix relating the orientation of A with respect to N can be formed:âxây
âz

 = ACN
n̂xn̂y
n̂z

 (6.14)

where

ACN =

âx · n̂x âx · n̂y âx · n̂z
ây · n̂x ây · n̂y ây · n̂z
âz · n̂x âz · n̂y âz · n̂z

 (6.15)

6.5. Direction Cosine Matrices 57

Learn Multibody Dynamics

We call ACN the “direction cosine matrix” as a general description of the relative orientation of two reference frames.
This matrix uniquely defines the relative orientation between reference frames N and A, it is invertible, and its inverse is
equal to the transpose, as shown above in the simple example. The determinant of the matrix is also always 1, to ensure
both associated frames are right-handed. The direction cosine matrix found in the prior section for a simple orientation
is a specific case of this more general definition. The direction cosine matrix is also referred to as a “rotation matrix” or
“orientation matrix” in some texts.

6.6 Successive Orientations

Successive orientations of a series of reference frames provides a convenient way to manage orientation among more than
a single pair. Below, an additional auxiliary reference frame B is shown that is simply oriented with respect to A in the
same way that A is from N above in the prior section.

Fig. 6.4: Two successive simple orientations through angles θ and then α for frames A and B, respectively.

We know from the prior sections that we can define these two relationships between each pair of reference frames as
follows: âxây

âz

 = ACN
n̂xn̂y
n̂z

 (6.16)

b̂xb̂y
b̂z

 = BCA
âxây
âz

 (6.17)

Now, substitute (6.16) into (6.17) to get: b̂xb̂y
b̂z

 = BCAACN
n̂xn̂y
n̂z

 (6.18)

showing that the direction cosine matrix between B and N results from matrix multiplying the intermediate direction
cosine matrices.

BCN = BCAACN (6.19)

58 Chapter 6. Orientation of Reference Frames

Learn Multibody Dynamics

This holds for any series of general three dimensional successive orientations and the relation is shown in the following
theorem:

ZCA = ZCY Y CX . . .CCBBCA (6.20)

where frames A through Z are succesively oriented.
Using Fig. 6.4 as an explicit example of this property, we start with the already defined ACN :

A_C_N

 cos (θ) sin (θ) 0
− sin (θ) cos (θ) 0

0 0 1

 (6.21)

BCA can then be defined similarly:

alpha = sm.symbols('alpha')

B_C_A = sm.Matrix([[sm.cos(alpha), sm.sin(alpha), 0],
[-sm.sin(alpha), sm.cos(alpha), 0],
[0, 0, 1]])

B_C_A

 cos (α) sin (α) 0
− sin (α) cos (α) 0

0 0 1

 (6.22)

Finally, BCN can be found by matrix multiplication:

B_C_N = B_C_A*A_C_N
B_C_N

− sin (α) sin (θ) + cos (α) cos (θ) sin (α) cos (θ) + sin (θ) cos (α) 0
− sin (α) cos (θ)− sin (θ) cos (α) − sin (α) sin (θ) + cos (α) cos (θ) 0

0 0 1

 (6.23)

Simplifying these trigonometric expressions shows the expected result:

sm.trigsimp(B_C_N)

 cos (α+ θ) sin (α+ θ) 0
− sin (α+ θ) cos (α+ θ) 0

0 0 1

 (6.24)

Exercise
If you are given BCN and ACN from the prior example, how would you find ACB?

6.6. Successive Orientations 59

Learn Multibody Dynamics

Solution
BCN = BCAACN

ACB =
(
BCN

(
ACN

)T)T
= ACN

(
BCN

)T (6.25)

6.7 SymPy Mechanics

As shown above, SymPy nicely handles the formulation of direction cosine matrices, but SymPy also offers a more useful
tool for tracking orientation among reference frames. The sympy.physics.mechanicsmodule includes numerous
objects and functions that ease the bookkeeping and mental models needed to manage various aspects of multibody
dynamics. We will import the module as in this text:

import sympy.physics.mechanics as me

class ReferenceFrame(me.ReferenceFrame):

def __init__(self, *args, **kwargs):

kwargs.pop('latexs', None)

lab = args[0].lower()
tex = r'\hat{{{}}}_{}'

super(ReferenceFrame, self).__init__(*args,
latexs=(tex.format(lab, 'x'),

tex.format(lab, 'y'),
tex.format(lab, 'z')),

**kwargs)
me.ReferenceFrame = ReferenceFrame

sympy.physics.mechanics includes a way to define and orient reference frames. To create a reference frame, use
ReferenceFrame and provide a name for your frame as a string.

N = me.ReferenceFrame('N')

The right-handed mutually perpendicular unit vectors associated with a reference frame are accessed with the attributes
.x, .y, and .z, like so:

N.x, N.y, N.z

(n̂x, n̂y, n̂z) (6.26)

Using Fig. 6.4 again as an example, we can define all three reference frames by additionally creating A and B:

A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')

N, A, B

60 Chapter 6. Orientation of Reference Frames

https://docs.sympy.org/latest/modules/physics/mechanics/index.html#module-sympy.physics.mechanics
https://docs.sympy.org/latest/modules/physics/mechanics/index.html#module-sympy.physics.mechanics
https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame

Learn Multibody Dynamics

(N, A, B)

We have already defined the direction cosine matrices for these two successive orientations. For example:

A_C_N

 cos (θ) sin (θ) 0
− sin (θ) cos (θ) 0

0 0 1

 (6.27)

relates A and N . ReferenceFrame objects can be oriented with respect to one another. The ori-
ent_explicit() method allows you to set the direction cosine matrix between two frames explicitly:

N.orient_explicit(A, A_C_N)

Warning: Note very carefully what version of the direction cosine matrix you pass to .orient_explicit().
Check its docstring with N.orient_explicit?.

Now you can ask for the direction cosine matrix of A with respect to N , i.e. ACN , using the dcm() method:

A.dcm(N)

 cos (θ) sin (θ) 0
− sin (θ) cos (θ) 0

0 0 1

 (6.28)

The direction cosine matrix of N with respect to A is found by reversing the order of the arguments:

N.dcm(A)

cos (θ) − sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

 (6.29)

Exercise
Orient reference frame D with respect to F with a simple rotation about y through angle β and set this orientation with
orient_explicit().

Solution

beta = sm.symbols('beta')

D = me.ReferenceFrame('D')
F = me.ReferenceFrame('F')

(continues on next page)

6.7. SymPy Mechanics 61

https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame.orient_explicit
https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame.orient_explicit
https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame.dcm
https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame.orient_explicit

Learn Multibody Dynamics

(continued from previous page)
F_C_D = sm.Matrix([[sm.cos(beta), 0, -sm.sin(beta)],

[0, 1, 0],
[sm.sin(beta), 0, sm.cos(beta)]])

F.orient_explicit(D, F_C_D.transpose())

F.dcm(D)

cos (β) 0 − sin (β)
0 1 0

sin (β) 0 cos (β)

 (6.30)

orient_explicit() requires you to form the direction cosine matrix yourself, but there are also methods that relieve
you of that necessity. For example, orient_axis() allows you to define simple orientations between reference frames
more naturally. You provide the frame to orient from, the angle to orient through, and the vector to orient about and the
correct direction cosine matrix will be formed. As an example, orient B with respect to A through α about âz by:

B.orient_axis(A, alpha, A.z)

Now the direction cosine matrix is automatically calculated and is returned with the .dcm() method:

B.dcm(A)

 cos (α) sin (α) 0
− sin (α) cos (α) 0

0 0 1

 (6.31)

The inverse is also defined on A:

A.dcm(B)

cos (α) − sin (α) 0
sin (α) cos (α) 0

0 0 1

 (6.32)

So each pair of reference frames are aware of its orientation partner (or partners).
Now that we’ve established orientations betweenN andA andA andB, we might want to know the relationships between
B and N . Remember that matrix multiplication of the two successive direction cosine matrices provides the answer:

sm.trigsimp(B.dcm(A)*A.dcm(N))

 cos (α+ θ) sin (α+ θ) 0
− sin (α+ θ) cos (α+ θ) 0

0 0 1

 (6.33)

But, the answer can also be found by calling dcm() with just the two reference frames in question, B and N . As long
as there is a successive path of intermediate, or auxiliary, orientations between the two reference frames, this is sufficient
for obtaining the desired direction cosine matrix and the matrix multiplication is handled internally for you:

62 Chapter 6. Orientation of Reference Frames

https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame.orient_explicit
https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame.orient_axis
https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame.dcm

Learn Multibody Dynamics

sm.trigsimp(B.dcm(N))

 cos (α+ θ) sin (α+ θ) 0
− sin (α+ θ) cos (α+ θ) 0

0 0 1

 (6.34)

Lastly, recall the general definition of the direction cosine matrix. We showed that the dot product of pairs of unit
vectors give the entries to the direction cosine matrix. mechanics has a dot() function that can calculate the dot
product of two vectors. Using it on two of the unit vector pairs returns the expected direction cosine matrix entry:

sm.trigsimp(me.dot(B.x, N.x))

cos (α+ θ) (6.35)

Exercise
Orient reference frame D with respect to C with a simple rotation through angle β about the shared −y axis. Use the
direction cosine matrix from this first orientation to set the orientation of reference frameE with respect toD. Show that
both pairs of reference frames have the same relative orientations.

Solution

beta = sm.symbols('beta')

C = me.ReferenceFrame('C')
D = me.ReferenceFrame('D')
E = me.ReferenceFrame('E')

D.orient_axis(C, beta, -C.y)

D.dcm(C)

 cos (β) 0 sin (β)
0 1 0

− sin (β) 0 cos (β)

 (6.36)

E.orient_explicit(D, C.dcm(D))
E.dcm(D)

 cos (β) 0 sin (β)
0 1 0

− sin (β) 0 cos (β)

 (6.37)

6.7. SymPy Mechanics 63

https://docs.sympy.org/latest/modules/physics/vector/api/functions.html#sympy.physics.vector.functions.dot

Learn Multibody Dynamics

6.8 Euler Angles

The camera stabilization gimbal shown in Fig. 6.5 has three revolute joints that orient the cameraD relative to the handgrip
frame A.

Fig. 6.5: Four reference frames labeled on the Turnigy Pro Steady Hand Camera Gimbal. Image copyright HobbyKing,
used under fair use for educational purposes.

If we introduce two additional auxiliary reference frames,B and C, attached to the intermediate camera frame members,
we can use three successive simple orientations to go from A to D. We can formulate the direction cosine matrices for
the reference frames using the same technique for the successive simple orientations shown in Successive Orientations, but
now our sequence of three orientations will enable us to orient D in any way possible relative to A in three dimensional
space.
Watch this video to get a sense of the orientation axes for each intermediate auxiliary reference frame:
We first orient B with respect to A about the shared z unit vector through the angle ψ, as shown below:

64 Chapter 6. Orientation of Reference Frames

https://en.wikipedia.org/wiki/Gimbal
https://en.wikipedia.org/wiki/Revolute_joint

Learn Multibody Dynamics

Fig. 6.6: View of the A and B x-y plane showing the orientation of B relative to A about z through angle ψ.

In SymPy, use ReferenceFrame to establish the relative orientation:

psi = sm.symbols('psi')

A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')

B.orient_axis(A, psi, A.z)

B.dcm(A)

 cos (ψ) sin (ψ) 0
− sin (ψ) cos (ψ) 0

0 0 1

 (6.38)

Now orient C with respect to B about their shared x unit vector through angle θ.

Fig. 6.7: View of the B and C y-z plane showing the orientation of C relative to B about x through angle θ.

theta = sm.symbols('theta')

(continues on next page)

6.8. Euler Angles 65

https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame

Learn Multibody Dynamics

(continued from previous page)
C = me.ReferenceFrame('C')

C.orient_axis(B, theta, B.x)

C.dcm(B)

1 0 0
0 cos (θ) sin (θ)
0 − sin (θ) cos (θ)

 (6.39)

Finally, orient the camera D with respect to C about their shared y unit vector through the angle ϕ.

Fig. 6.8: View of the C and D x-z plane showing the orientation of D relative to C about y through angle φ.

phi = sm.symbols('varphi')

D = me.ReferenceFrame('D')

D.orient_axis(C, phi, C.y)

D.dcm(C)

cos (φ) 0 − sin (φ)
0 1 0

sin (φ) 0 cos (φ)

 (6.40)

With all of the intermediate orientations defined, when can now ask for the relationship DCA of the cameraD relative
to the handgrip frame A:

D.dcm(A)

− sin (ψ) sin (θ) sin (φ) + cos (ψ) cos (φ) sin (ψ) cos (φ) + sin (θ) sin (φ) cos (ψ) − sin (φ) cos (θ)
− sin (ψ) cos (θ) cos (ψ) cos (θ) sin (θ)

sin (ψ) sin (θ) cos (φ) + sin (φ) cos (ψ) sin (ψ) sin (φ)− sin (θ) cos (ψ) cos (φ) cos (θ) cos (φ)

 (6.41)

66 Chapter 6. Orientation of Reference Frames

Learn Multibody Dynamics

With these three successive orientations the camera can be rotated arbitrarily relative to the handgrip frame. These
successive z-x-y orientations are a standard way of describing the orientation of two reference frames and are referred to
as Euler Angles1.
There are 12 valid sets of successive orientations that can arbitrarily orient one reference frame with respect to another.
These are the six “Proper Euler Angles”:

z-x-z, x-y-x, y-z-y, z-y-z, x-z-x, y-x-y (6.42)

and the six “Tait-Bryan Angles”:

x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z (6.43)

Different sets can be more or less suitable for the kinematic nature of the system you are describing. We will also refer
to these 12 possible orientation sets as “body fixed orientations”. As we will soon see, a rigid body and a reference frame
are synonymous from an orientation perspective and each successive orientation rotates about a shared unit vector fixed
in both of the reference frames (or bodies), thus “body fixed orientations”. The method orient_body_fixed() can
be used to establish the relationship between A and D without the need to create auxiliary reference frames B and C:

A = me.ReferenceFrame('A')
D = me.ReferenceFrame('D')

D.orient_body_fixed(A, (psi, theta, phi), 'zxy')

D.dcm(A)

− sin (ψ) sin (θ) sin (φ) + cos (ψ) cos (φ) sin (ψ) cos (φ) + sin (θ) sin (φ) cos (ψ) − sin (φ) cos (θ)
− sin (ψ) cos (θ) cos (ψ) cos (θ) sin (θ)

sin (ψ) sin (θ) cos (φ) + sin (φ) cos (ψ) sin (ψ) sin (φ)− sin (θ) cos (ψ) cos (φ) cos (θ) cos (φ)

 (6.44)

Exercise
Euler discovered 6 of the 12 orientation sets. One of these sets is shown in this figure:

1 Technically, this set of angles for the gimbal are one of the 6 Tait-Bryan angles, but “Euler Angles” is used as a general term to describe both
Tait-Bryan angles and “proper Euler angles”.

6.8. Euler Angles 67

https://en.wikipedia.org/wiki/Euler_angles
https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame.orient_body_fixed
https://en.wikipedia.org/wiki/Leonhard_Euler

Learn Multibody Dynamics

Fig. 6.9: An orientation through Euler angles with frame A (yellow), B (red), C (green), and D (blue). The rightward
yellow arrow is the x direction, leftward yellow arrow is the y direction, and upward yellow arrow is the z direction. All
frames’ unit vectors are aligned before being oriented.

Take the acute angles between A and B to be ψ, B and C to be θ, and C andD to be φ. Determine what Euler angle set
this is and then calculate DCA using orient_axis() and then with orient_body_fixed() showing that you
get the same result.

Solution
The Euler angle set is z-x-z.

psi, theta, phi = sm.symbols('psi, theta, varphi')

With orient_axis():

A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')
C = me.ReferenceFrame('C')
D = me.ReferenceFrame('D')

B.orient_axis(A, psi, A.z)
C.orient_axis(B, theta, B.x)
D.orient_axis(C, phi, C.z)

(continues on next page)

68 Chapter 6. Orientation of Reference Frames

https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame.orient_axis
https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame.orient_body_fixed
https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame.orient_axis

Learn Multibody Dynamics

(continued from previous page)

D.dcm(A)

− sin (ψ) sin (φ) cos (θ) + cos (ψ) cos (φ) sin (ψ) cos (φ) + sin (φ) cos (ψ) cos (θ) sin (θ) sin (φ)
− sin (ψ) cos (θ) cos (φ)− sin (φ) cos (ψ) − sin (ψ) sin (φ) + cos (ψ) cos (θ) cos (φ) sin (θ) cos (φ)

sin (ψ) sin (θ) − sin (θ) cos (ψ) cos (θ)

 (6.45)

With orient_body_fixed():

A = me.ReferenceFrame('A')
D = me.ReferenceFrame('D')

D.orient_body_fixed(A, (psi, theta, phi), 'zxz')

D.dcm(A)

− sin (ψ) sin (φ) cos (θ) + cos (ψ) cos (φ) sin (ψ) cos (φ) + sin (φ) cos (ψ) cos (θ) sin (θ) sin (φ)
− sin (ψ) cos (θ) cos (φ)− sin (φ) cos (ψ) − sin (ψ) sin (φ) + cos (ψ) cos (θ) cos (φ) sin (θ) cos (φ)

sin (ψ) sin (θ) − sin (θ) cos (ψ) cos (θ)

 (6.46)

6.9 Alternatives for Representing Orientation

In the previous section, Euler-angles were used to encode the orientation of a frame or body. There are many alternative
approaches to representing orientations. Three such representations, which will be used throughout this book, were already
introduced:

• Euler-angles themselves, which provides a minimal representation (only 3 numbers), and a relatively straightfor-
ward way to compute the change in orientation from the angular velocity (see Angular Kinematics).

• the direction cosine matrix, which allow easy rotations or vectors and consecutive rotations, both via matrix
multiplication,

• the axis-angle representation (used in theorient_axis()method), which is often an intuitive way to describe
the orientation for manual input, and is useful when the axis of rotation is fixed.

Each representation also has downsides. For example, the direction cosine matrix consists of nine elements; more to keep
track of than three Euler angles. Furthermore, not all combinations of nine elements form a valid direction cosine matrix,
so we have to be careful to check and enforce validity when writing code.

6.10 Learn more

One more frequently used approach to representing orientations is based on so called quaternions. Quaternions are like
imaginary numbers, but with three imaginary constants: i, j and k. These act as described by the rule

i2 = j2 = k2 = ijk = −1. (6.47)

A general quaternion q can thus be written in terms of its components q0, qi qj , qk which are real numbers:

q = q0 + qii+ qjj + qkk (6.48)

6.9. Alternatives for Representing Orientation 69

https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame.orient_body_fixed
https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions
https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions
https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame.orient_axis
https://en.wikipedia.org/wiki/Quaternion

Learn Multibody Dynamics

The orient_quaternion() method enables orienting a reference frame using a quaternion in sympy:

N = me.ReferenceFrame('N')
A = me.ReferenceFrame('A')

q_0, qi, qj, qk = sm.symbols('q_0 q_i q_j q_k')
q = (q_0, qi, qj, qk)
A.orient_quaternion(N, q)
A.dcm(N)

q20 + q2i − q2j − q2k 2q0qk + 2qiqj −2q0qj + 2qiqk
−2q0qk + 2qiqj q20 − q2i + q2j − q2k 2q0qi + 2qjqk
2q0qj + 2qiqk −2q0qi + 2qjqk q20 − q2i − q2j + q2k

 (6.49)

A rotation of an angle θ around a unit vector ê can be converted to a quaternion representation by having q0 = cos
(
θ
2

)
,

and the other components equal to a factor sin
(
θ
2

)
times the components of the axis of rotation ê. For example, if the

rotation axis is n̂x, we get:

q = (sm.cos(theta/2), sm.sin(theta/2), 0, 0)
A.orient_quaternion(N, q)
sm.trigsimp(A.dcm(N))

1 0 0
0 cos (θ) sin (θ)
0 − sin (θ) cos (θ)

 (6.50)

The length of a quaternion is the square root of the sum of the squares of its components. For a quaternion representing
an orientation, this length must always be 1.
It turns out that the multiplication rules for (unit) quaternions provide an efficient way to compose multiple rotations, and
to numerically integrate the orientation when given an angular velocity. Due to the interpretation related to the angle and
axis representation, it is also a somewhat intuitive representation. However, the integration algorithm needs to take an
additional step to ensure the quaternion always has unit length.
The representation of orientations in general, turns out to be related to an area of mathematics called Lie-groups. The
theory of Lie-groups has further applications to the mechanics and control of multibody systems. An example application
is finding a general method for simplifying the equations for symmetric systems, so this can be done more easily and to
more systems. The Lie-group theory is not used in this book. Instead, the interested reader can look up the 3D rotation
group as a starting point for further study.

70 Chapter 6. Orientation of Reference Frames

https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame.orient_quaternion
https://en.wikipedia.org/wiki/3D_rotation_group
https://en.wikipedia.org/wiki/3D_rotation_group

CHAPTER

SEVEN

VECTORS

Note: You can download this example as a Python script: vectors.py or Jupyter Notebook: vectors.ipynb.

import sympy as sm
import sympy.physics.mechanics as me
sm.init_printing(use_latex='mathjax')

class ReferenceFrame(me.ReferenceFrame):

def __init__(self, *args, **kwargs):

kwargs.pop('latexs', None)

lab = args[0].lower()
tex = r'\hat{{{}}}_{}'

super(ReferenceFrame, self).__init__(*args,
latexs=(tex.format(lab, 'x'),

tex.format(lab, 'y'),
tex.format(lab, 'z')),

**kwargs)
me.ReferenceFrame = ReferenceFrame

7.1 Learning Objectives

After completing this chapter readers will be able to:
• State the properties of a vectors.
• Determine what scalars a vector is a function of.
• Add, subtract, scale, negate, normalize vectors.
• Dot and cross vectors with each other.
• Express vectors in different reference frames.
• Define vectors with components expressed in different reference frames.
• Create position vectors between points using reference frame unit vectors.

71

Learn Multibody Dynamics

7.2 What is a vector?

Vectors have three characteristics:
1. magnitude
2. orientation
3. sense

The direction the vector points is derived from both the orientation and the sense. Vectors are equal when all three
characteristics are the same.

Fig. 7.1: Three characteristics of vectors: magnitude, orientation, and sense.

Note: In this text we will distinguish scalar variables, e.g. v, from vectors by including a bar over the top of the symbol,
e.g. v̄. Vectors will be drawn as follows:

Fig. 7.2: Various ways vectors will be drawn in figures.

72 Chapter 7. Vectors

Learn Multibody Dynamics

Fig. 7.3: See right-hand rule for a refresher on right handed systems.
Right_hand_rule_simple.png: The original uploader was Schorschi2 at German Wikipedia.derivative work: Wizard191, Public

domain, via Wikimedia Commons

Vectors have these mathematical properties:
• scalar multiplicative: v̄ = λū where λ can only change the magnitude and the sense of the vector, i.e. v̄ and ū have
the same orientation

• commutative: ū+ v̄ = v̄ + ū

• distributive: λ(ū+ v̄) = λū+ λv̄

• associative: (ū+ v̄) + w̄ = ū+ (v̄ + w̄)

Unit vectors are vectors with a magnitude of 1. If the magnitude of v̄ is 1, then we indicate this with v̂. Any vector has
an associated unit vector with the same orientation and sense, found by:

û =
ū

|ū| (7.1)

where |ū| is the Euclidean norm (2-norm), or magnitude, of the vector ū.

7.3 Vector Functions

Vectors can be functions of scalar variables. If a change in scalar variable q changes the magnitude and/or direction of
v̄ when observed from A, v̄ is a vector function of q in A. It is possible that v̄ may not be a vector function of scalar
variable q when observed from another reference frame, i.e. the function dependency of a vector on a scalar depends on
the reference frame it is observed from.
Let vector v̄ be a function of n scalars q1, q2, . . . , qn in A. If we introduce âx, ây, âz as a set of mutually perpendicular
unit vectors fixed in A, then these unit vectors are constant when observed from A. There are then three unique scalar

7.3. Vector Functions 73

https://en.wikipedia.org/wiki/Right-hand_rule
https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm

Learn Multibody Dynamics

functions vx, vy, vz of q1, q2, . . . , qn such that:

v̄ = vxâx + vyây + vz âz (7.2)

vxâx is called the âx component of v̄ and vx is called measure number of v̄. Since the components are mutually perpen-
dicular the measure number can also be found from the dot product of v̄ and the respective unit vector:

v̄ = (v̄ · âx)âx + (v̄ · ây)ây + (v̄ · âz)âz (7.3)

which is the projection of v̄ onto each unit vector. When written this way we can say that v̄ is expressed inA. See sections
1.1-1.3 in [Kane1985] for a more general explanation.

7.4 Addition

When we add vector b̄ to vector ā, the result is a vector that starts at the tail of ā and ends at the tip of b̄:

Fig. 7.4: Graphical vector addition

Vectors in SymPy Mechanics are created by first introducing a reference frame and using its associated unit vectors to
construct vectors of arbitrary magnitude and direction.

N = me.ReferenceFrame('N')

Now introduce some scalar variables:

a, b, c, d, e, f = sm.symbols('a, b, c, d, e, f')

The simplest 3D non-unit vector is made up of a single component:

v = a*N.x
v

74 Chapter 7. Vectors

Learn Multibody Dynamics

an̂x (7.4)

A, possible more familiar, column matrix form of a vector is accessed with the to_matrix().

v.to_matrix(N)

a0
0

 (7.5)

Fully 3D and arbitrary vectors can be created by providing a measure number for each unit vector of N :

w = a*N.x + b*N.y + c*N.z
w

an̂x + bn̂y + cn̂z (7.6)

And the associated column matrix form:

w.to_matrix(N)

ab
c

 (7.7)

Vector addition works by adding the measure numbers of each common component:

w̄ =an̂x + bn̂y + cn̂z

x̄ =dn̂x + en̂y + fn̂z

w̄ + x̄ =(a+ d)n̂x + (b+ e)n̂y + (c+ f)n̂z

(7.8)

SymPy Mechanics vectors work as expected:

x = d*N.x + e*N.y + f*N.z
x

dn̂x + en̂y + fn̂z (7.9)

w + x

(a+ d)n̂x + (b+ e)n̂y + (c+ f)n̂z (7.10)

7.4. Addition 75

https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.vector.Vector.to_matrix

Learn Multibody Dynamics

7.5 Scaling

Multiplying a vector by a scalar changes its magnitude, but not its orientation. Scaling by a negative number changes a
vector’s magnitude and reverses its sense (rotates it by π radians).

Fig. 7.5: Vector scaling

y = 2*w
y

2an̂x + 2bn̂y + 2cn̂z (7.11)

z = -w
z

−an̂x − bn̂y − cn̂z (7.12)

Exercise
Create three vectors that lie in the xy plane of reference frame N where each vector is:

1. of length l that is at an angle of π4 degrees from the n̂x unit vector.
2. of length 10 and is in the −n̂y direction
3. of length l and is θ radians from the n̂y unit vector.

Finally, add vectors from 1 and 2 and substract 5 times the third vector.
Hint: SymPy has fundamental constants and trigonometic functions, for example sm.tan, sm.pi.

Solution

76 Chapter 7. Vectors

Learn Multibody Dynamics

N = me.ReferenceFrame('N')
l, theta = sm.symbols('l, theta')

v1 = l*sm.cos(sm.pi/4)*N.x + l*sm.sin(sm.pi/4)*N.y
v1

√
2l

2
n̂x +

√
2l

2
n̂y (7.13)

v2 = -10*N.y
v2

−10n̂y (7.14)

v3 = -l*sm.sin(theta)*N.x + l*sm.cos(theta)*N.y
v3

−l sin (θ)n̂x + l cos (θ)n̂y (7.15)

v1 + v2 - 5*v3

(5l sin (θ) +
√
2l

2
)n̂x + (−5l cos (θ) +

√
2l

2
− 10)n̂y (7.16)

7.6 Dot Product

The dot product, which yields a scalar quantity, is defined as:

v̄ · w̄ = |v̄||w̄| cos θ (7.17)

where θ is the angle between the two vectors. For arbitrary measure numbers this results in the following:

v̄ =vxn̂x + vyn̂y + vzn̂z

w̄ =wxn̂x + wyn̂y + wzn̂z

v̄ · w̄ =vxwx + vvwy + vzwz

(7.18)

The dot product has these properties:

7.6. Dot Product 77

https://en.wikipedia.org/wiki/Dot_product

Learn Multibody Dynamics

Fig. 7.6: Vector dot product

• You can pull out scalars: cū · dv̄ = cd(ū · v̄)

• Order does not matter (commutative multiplication): ū · v̄ = v̄ · ū

• You can distribute: ū · (v̄ + w̄) = ū · v̄ + ū · w̄

The dot product is often used to determine:
• the angle between two vectors: θ = arccos ā·b̄

|ā|b̄|

• a vector’s magnitude: |v̄| =
√
v̄ · v̄

• the length of a vector along a direction of another vector û (called the projection): projûv̄ = v̄ · û

• if two vectors are perpendicular: v̄ · w̄ = 0 if and only if v̄ ⊥ w̄

• Compute power: P = F̄ · v̄, where F̄ is a force vector and v̄ is the velocity of the point the force is acting on.
Also, dot products are used to convert a vector equation into a scalar equation by “dotting” an entire equation with a
vector.

N = me.ReferenceFrame('N')
w = a*N.x + b*N.y + c*N.z
x = d*N.x + e*N.y + f*N.z

The dot() function calculates the dot product:

me.dot(w, x)

ad+ be+ cf (7.19)

The method form is equivalent:

w.dot(x)

78 Chapter 7. Vectors

https://docs.sympy.org/latest/modules/physics/vector/api/functions.html#sympy.physics.vector.functions.dot

Learn Multibody Dynamics

ad+ be+ cf (7.20)

You can compute a unit vector ŵ in the same direction as w̄ with the normalize() method:

w.normalize()

a√
a2 + b2 + c2

n̂x +
b√

a2 + b2 + c2
n̂y +

c√
a2 + b2 + c2

n̂z (7.21)

Exercise
Write your own function that normalizes an arbitrary vector and show that it gives the same result as w.normalize().

Solution

def normalize(vector):
return vector/sm.sqrt(me.dot(vector, vector))

normalize(w)

a√
a2 + b2 + c2

n̂x +
b√

a2 + b2 + c2
n̂y +

c√
a2 + b2 + c2

n̂z (7.22)

SymPy Mechanics vectors also have a method magnitude() which is helpful:

w.magnitude()

√
a2 + b2 + c2 (7.23)

w/w.magnitude()

a√
a2 + b2 + c2

n̂x +
b√

a2 + b2 + c2
n̂y +

c√
a2 + b2 + c2

n̂z (7.24)

Exercise
Given the vectors v̄1 = an̂x + bn̂y + an̂z and v̄2 = bn̂x + an̂y + bn̂z find the angle between the two vectors using the
dot product.

Solution

7.6. Dot Product 79

https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.vector.Vector.normalize
https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.vector.Vector.magnitude

Learn Multibody Dynamics

N = me.ReferenceFrame('N')
v1 = a*N.x + b*N.y + a*N.z
v2 = b*N.x + a*N.y + b*N.z

sm.acos(v1.dot(v2) / (v1.magnitude()*v2.magnitude()))

acos
(

3ab√
a2 + 2b2

√
2a2 + b2

)
(7.25)

7.7 Cross Product

The cross product, which yields a vector quantity, is defined as:

v̄ × w̄ = |v̄|w̄| sin θû (7.26)

where θ is the angle between the two vectors, and û is the unit vector perpendicular to both v̄ and w̄ whose sense is given
by the right-hand rule. For arbitrary measure numbers this results in the following:

v̄ =vxn̂x + vyn̂y + vzn̂z

w̄ =wxn̂x + wyn̂y + wzn̂z

v̄ × w̄ =(vywz − vzwy)n̂x + (vzwx − vxwz)n̂y + (vxwy − vywx)n̂z

(7.27)

Fig. 7.7: Vector cross product

Some properties of cross products are:
• Crossing a vector with itself “cancels” it: ā× ā = 0̄

80 Chapter 7. Vectors

https://en.wikipedia.org/wiki/Cross_product

Learn Multibody Dynamics

• You can pull out scalars: cā× db̄ = cd(ā× b̄)

• Order DOES matter (because of the right-hand rule): ā× b̄ = −b̄× ā

• You can distribute: ā× (b̄+ c̄) = ā× b̄+ ā× c̄

• They are NOT associative: ā× (b̄× c̄) ̸= (ā× b̄)× c̄

The cross product is used to:
• obtain a vector/direction perpendicular to two other vectors
• determine if two vectors are parallel: v̄ × w̄ = 0̄ if v̄ ∥ w̄

• compute moments: r̄ × F̄

• compute the area of a triangle
SymPy Mechanics can calculate cross products with the cross() function:

N = me.ReferenceFrame('N')
w = a*N.x + b*N.y + c*N.z
w

an̂x + bn̂y + cn̂z (7.28)

x = d*N.x + e*N.y + f*N.z
x

dn̂x + en̂y + fn̂z (7.29)

me.cross(w, x)

(bf − ce)n̂x + (−af + cd)n̂y + (ae− bd)n̂z (7.30)

The method form is equivalent:

w.cross(x)

(bf − ce)n̂x + (−af + cd)n̂y + (ae− bd)n̂z (7.31)

Exercise
Given three points located in reference frame N by:

p̄1 = 23n̂x − 12n̂y

p̄2 = 16n̂x + 2n̂y − 4n̂z

p̄3 = n̂x + 14n̂z

(7.32)

7.7. Cross Product 81

https://docs.sympy.org/latest/modules/physics/vector/api/functions.html#sympy.physics.vector.functions.cross

Learn Multibody Dynamics

Find the area of the triangle bounded by these three points using the cross product.
Hint: Search online for the relationship of the cross product to triangle area.

Solution

N = me.ReferenceFrame('N')

p1 = 23*N.x - 12* N.y
p2 = 16*N.x + 2*N.y - 4*N.z
p3 = N.x + 14*N.z

me.cross(p2 - p1, p3 - p1).magnitude() / 2

√
36077 (7.33)

7.8 Vectors Expressed in Multiple Reference Frames

The notation of vectors represented by a scalar measure numbers associated with unit vectors becomes quite useful when
you need to describe vectors with components in multiple reference frames. Utilizing unit vectors fixed in various frames
is rather natural, with no need to think about direction cosine matrices.

N = me.ReferenceFrame('N')
A = me.ReferenceFrame('A')

a, b, theta = sm.symbols('a, b, theta')

v = a*A.x + b*N.y
v

aâx + bn̂y (7.34)

All of the previously described operations work as expected:

v + v

2aâx + 2bn̂y (7.35)

If an orientation is established between the two reference frames, the direction cosine transformations are handled for
you and can be used to naturally express the vector in either reference frame using the express().

A.orient_axis(N, theta, N.z)

v.express(N)

82 Chapter 7. Vectors

https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.vector.Vector.express

Learn Multibody Dynamics

a cos (θ)n̂x + (a sin (θ) + b)n̂y (7.36)

v.express(A)

(a+ b sin (θ))âx + b cos (θ)ây (7.37)

7.9 Relative Position Among Points

Take for example the balanced-arm lamp, which has multiple articulated joints configured in a way to balance the weight
of the lamp in any configuration. Here are two examples:
With those lamps in mind, Fig. 7.10 shows a diagram of a similar desk lamp with all necessary configuration information
present. The baseN is fixed to the desk. The first linkage A is oriented with respect toN by a z-x body fixed orientation
through angles q1 and q2. Point P1 is fixed in N and is located at the center of the base. Linkage A is defined by points
P1 and P2 which are separated by length l1 along the âz direction. Linkage B orients simply with respect to A about
âx = b̂x through angle q3 and point P3 is l2 from P2 along b̂z . Lastly, the lamp head C orients relative to B by a x-z
body fixed orientation through angles q4 and q5. The center of the light bulb P4 is located relative to P3 by the distances
l3 along ĉz and l4 along −ĉy .
We will use the following notation for vectors that indicate the relative position between two points:

r̄P2/P1 (7.38)

which reads as the “position vector from P1 to P2” or the “position vector of P2 with respect to P1”. The tail of the vector
is at P1 and the tip is at P2.

Exercise
Reread the Vector Functions section and answer the following questions:

1. Is r̄P2/P1 vector function of q1 and q2 in N?
2. Is r̄P2/P1 vector function of q1 and q1 in A?
3. Is r̄P2/P1 vector function of q3 and q4 in N?
4. Is r̄P3/P2 vector function of q1 and q2 in N?

Solution
See below how to use .free_symbols() to check your answers.

We can now write position vectors between pairs of points as we move from the base of the lamp to the light bulb. We’ll
do so with SymPy Mechanics. First create the necessary symbols and reference frames.

7.9. Relative Position Among Points 83

https://en.wikipedia.org/wiki/Balanced-arm_lamp

Learn Multibody Dynamics

Fig. 7.8: Balanced-arm desk lamp.
Flickr user “renaissance chambara”, cropped by uploader, CC BY 2.0 https://creativecommons.org/licenses/by/2.0, via Wikimedia

Commons

84 Chapter 7. Vectors

https://creativecommons.org/licenses/by/2.0

Learn Multibody Dynamics

Fig. 7.9: Example of a huge balance-arm lamp in Rotterdam at the Schouwburgplein.
GraphyArchy, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

7.9. Relative Position Among Points 85

https://creativecommons.org/licenses/by-sa/4.0

Learn Multibody Dynamics

Fig. 7.10: Configuration diagram of a balanced-arm desk lamp.

86 Chapter 7. Vectors

Learn Multibody Dynamics

q1, q2, q3, q4, q5 = sm.symbols('q1, q2, q3, q4, q5')
l1, l2, l3, l4 = sm.symbols('l1, l2, l3, l4')
N = me.ReferenceFrame('N')
A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')
C = me.ReferenceFrame('C')

Now establish the orientations, starting with A’s orientation relative to N :

A.orient_body_fixed(N, (q1, q2, 0), 'ZXZ')

Note: Notice that the unneeded third simple orientation angle was set to zero.

Then B’s orientation relatie to A:

B.orient_axis(A, q3, A.x)

And finally C ’s orientation relative to B:

C.orient_body_fixed(B, (q4, q5, 0), 'XZX')

We can now create position vectors between pairs of points in the most convenient frame to do so, i.e. the reference frame
in which both points lie on a line parallel to an existing unit vector. The intermediate vectors that connect P1 to P2, P2

to P3, and P3 to P4 are:

R_P1_P2 = l1*A.z
R_P2_P3 = l2*B.z
R_P3_P4 = l3*C.z - l4*C.y

The position vector from P1 to P4 is then found by vector addition:

R_P1_P4 = R_P1_P2 + R_P2_P3 + R_P3_P4
R_P1_P4

l1âz + l2b̂z − l4ĉy + l3ĉz (7.39)

To convince you of the utility of our vector notation, have a look at what r̄P4/P1 looks like if expressed completely in
the N frame:

R_P1_P4.express(N)

(l1 sin (q1) sin (q2) + l2 (sin (q1) sin (q2) cos (q3) + sin (q1) sin (q3) cos (q2)) + l3 (− (sin (q1) sin (q2) sin (q3)− sin (q1) cos (q2) cos (q3)) sin (q4) + (sin (q1) sin (q2) cos (q3) + sin (q1) sin (q3) cos (q2)) cos (q4))− l4 ((sin (q1) sin (q2) sin (q3)− sin (q1) cos (q2) cos (q3)) cos (q4) cos (q5) + (sin (q1) sin (q2) cos (q3) + sin (q1) sin (q3) cos (q2)) sin (q4) cos (q5)− sin (q5) cos (q1)))n̂x + (−l1 sin (q2) cos (q1) + l2 (− sin (q2) cos (q1) cos (q3)− sin (q3) cos (q1) cos (q2)) + l3 (− (− sin (q2) sin (q3) cos (q1) + cos (q1) cos (q2) cos (q3)) sin (q4) + (− sin (q2) cos (q1) cos (q3)− sin (q3) cos (q1) cos (q2)) cos (q4))− l4 ((− sin (q2) sin (q3) cos (q1) + cos (q1) cos (q2) cos (q3)) cos (q4) cos (q5) + (− sin (q2) cos (q1) cos (q3)− sin (q3) cos (q1) cos (q2)) sin (q4) cos (q5)− sin (q1) sin (q5)))n̂y + (l1 cos (q2) + l2 (− sin (q2) sin (q3) + cos (q2) cos (q3)) + l3 ((− sin (q2) sin (q3) + cos (q2) cos (q3)) cos (q4)− (sin (q2) cos (q3) + sin (q3) cos (q2)) sin (q4))− l4 ((− sin (q2) sin (q3) + cos (q2) cos (q3)) sin (q4) cos (q5) + (sin (q2) cos (q3) + sin (q3) cos (q2)) cos (q4) cos (q5)))n̂z
(7.40)

If you have properly established your orientations and position vectors, SymPy Mechanics can help you determine the
answers to the previous exercise. Expressing r̄P2/P1 inN can show us which scalar variables that vector function depends
on in N .

R_P1_P2.express(N)

7.9. Relative Position Among Points 87

Learn Multibody Dynamics

l1 sin (q1) sin (q2)n̂x − l1 sin (q2) cos (q1)n̂y + l1 cos (q2)n̂z (7.41)

By inspection, we see the variables are l1, q1, q2. The free_symbols() function can extract these scalars directly:

R_P1_P2.free_symbols(N)

{l1, q1, q2} (7.42)

Warning: free_symbols() shows all SymPy Symbol objects, but will not show Function() objects. In
the next chapter we will introduce a way to do the same thing when functions of time are present in your vector
expressions.

Similarly, other vector functions can be inspected:

R_P1_P2.free_symbols(A)

{l1} (7.43)

R_P1_P4.free_symbols(N)

{l1, l2, l3, l4, q1, q2, q3, q4, q5} (7.44)

88 Chapter 7. Vectors

https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.vector.Vector.free_symbols

CHAPTER

EIGHT

VECTOR DIFFERENTIATION

Note: You can download this example as a Python script: differentiation.py or Jupyter Notebook:
differentiation.ipynb.

import sympy as sm
import sympy.physics.mechanics as me
sm.init_printing(use_latex='mathjax')

class ReferenceFrame(me.ReferenceFrame):

def __init__(self, *args, **kwargs):

kwargs.pop('latexs', None)

lab = args[0].lower()
tex = r'\hat{{{}}}_{}'

super(ReferenceFrame, self).__init__(*args,
latexs=(tex.format(lab, 'x'),

tex.format(lab, 'y'),
tex.format(lab, 'z')),

**kwargs)
me.ReferenceFrame = ReferenceFrame

8.1 Learning Objectives

After completing this chapter readers will be able to:
• Calculate the partial derivative of a vector with respect to any variable when viewed from any reference frame.
• Use the product rule to find the relationship of changing measure numbers and changing unit vectors.
• Explain the difference in expressing a vector in a reference frame and taking the derivative of the vector when
observed from the reference frame.

• Calculate second partial derivatives.
• Calculate time derivatives of vector functions.

89

Learn Multibody Dynamics

8.2 Partial Derivatives

If a vector v̄ is a function of n scalar variables q1, q2, . . . , qn in reference frame A then the first partial derivatives of
v̄ in A with respect to qr where r = 1 . . . n can be formed by applying the product rule of differentation and taking
into account that the mutually perpendicular unit vectors fixed in A do not change when observed from A. The partial
derivatives are then:

A∂v̄

∂qr
=

3∑
i=1

∂vi
∂qr

âi for r = 1 . . . n (8.1)

where vi are the measure numbers of v̄ expressed inA associated with the mutually perpendicular unit vectors â1, â2, â3.
If v̄ = vxâx + vyây + vz âz the above definition expands to:

A∂v̄

∂qr
=
∂vx
∂qr

âx +
∂vy
∂qr

ây +
∂vz
∂qr

âz for r = 1 . . . n (8.2)

Many of the vectors we will work with in multibody dynamics will be a function of a single variable, most often time t.
If that is the case, the partial derivative reduces to a single variate derivative:

Adv̄

dt
:=

3∑
i=1

dvi
dt
âi (8.3)

Warning: A derivative written as ∂v̄
∂qr

is meaningless because no reference frame is indicated. The derivative is
dependent on which reference frame the change is observed from, so without a reference frame, the derivative cannot
be calculated. This is not the case for partial derivatives of scalar expressions, as no reference frame is involved.

The above definition implies that a vector must be expressed in the reference frame one is observing the change from
before calculating the partial derivatives of the scalar measure numbers. For example, here is a vector that is expressed
with unit vectors from three different reference frames:

alpha, beta = sm.symbols('alpha, beta')
a, b, c, d, e, f = sm.symbols('a, b, c, d, e, f')

A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')
C = me.ReferenceFrame('C')

B.orient_axis(A, alpha, A.x)
C.orient_axis(B, beta, B.y)

v = a*A.x + b*A.y + c*B.x + d*B.y + e*C.x + f*C.y
v

aâx + bây + cb̂x + db̂y + eĉx + f ĉy (8.4)

To calculate A∂v̄
∂α we first need to project the vector v̄ onto the unit vectors of A and take the partial derivative of those

measure numbers with respect to α. The dot product provides the projection and the resulting scalar is differentiated:

dvdalphaAx = v.dot(A.x).diff(alpha)
dvdalphaAx

90 Chapter 8. Vector Differentiation

Learn Multibody Dynamics

0 (8.5)

dvdalphaAy = v.dot(A.y).diff(alpha)
dvdalphaAy

−d sin (α) + e sin (β) cos (α)− f sin (α) (8.6)

dvdalphaAz = v.dot(A.z).diff(alpha)
dvdalphaAz

d cos (α) + e sin (α) sin (β) + f cos (α) (8.7)

We can then construct the vector A∂v̄
∂α from the new measure numbers know that the A unit vectors are fixed:

dvdalphaA = dvdalphaAx*A.x + dvdalphaAy*A.y + dvdalphaAz*A.z
dvdalphaA

(−d sin (α) + e sin (β) cos (α)− f sin (α))ây + (d cos (α) + e sin (α) sin (β) + f cos (α))âz (8.8)

SymPy Mechanics vectors have a special diff() method that manages taking partial derivatives from different refer-
ence frames. For the vector .diff() method you provide first the variable α followed by the reference frame you are
observing from:

v.diff(alpha, A)

(−d sin (α) + e sin (β) cos (α)− f sin (α))ây + (d cos (α) + e sin (α) sin (β) + f cos (α))âz (8.9)

This gives the identical result as our manually constructed partial derivative above.

Exercise
Calculate B∂v̄

∂e manually and with diff() and show the results are the same.

Solution

dvdeBx = v.dot(B.x).diff(e)
dvdeBy = v.dot(B.y).diff(e)
dvdeBz = v.dot(B.z).diff(e)
dvdeBx*B.x + dvdeBy*B.y + dvdeBz*B.z

8.2. Partial Derivatives 91

https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.vector.Vector.diff
https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.vector.Vector.diff

Learn Multibody Dynamics

cos (β)b̂x − sin (β)b̂z (8.10)

v.diff(e, B).express(B)

cos (β)b̂x − sin (β)b̂z (8.11)

Warning: What’s the difference in .express() and .diff()?
Any vector can be “expressed” in any reference frame. To express a vector in a reference frame means to project it
onto the three mutually perpendicular unit vectors fixed in the reference frame and then to rewrite the vector in terms
of measure numbers associated with those three unit vectors using the relevant direction cosine matrix entries. This
has nothing to do with differentiation.
We can also take the derivative of a vector when viewed from a specific reference frame. To do so, we observe how
the vector changes when viewed from the reference frame and formulate that derivative. Once the derivative is taken,
we can express the new vector in any reference frame we desire.
Expressing a vector in a reference frame and taking a derivative of a vector when observered from a reference frame
are two different things! Try not to get tripped up by this important distinction.

8.3 Product Rule

Consider again vector v̄ = vxâx+vyây+vz âz . Previously, only the measure numbers of this vector were scalar functions
of qr. Now consider a reference frame N that is oriented relative to A such that the relative orientation also depends on
qr. This means, that when observed from N , the unit vectors âx, ây, âz may be a function of qr. With both the measure
numbers and unit vectors dependent on qr the derivative of v̄ in N requires the use of the product rule when taking the
partial derivative. For example:

N∂v̄

∂qr
=

N∂vx
∂qr

âx + vx
N∂âx
∂qr

+
N∂vy
∂qr

ây + vy
N∂ây
∂qr

+
N∂vz
∂qr

âz + vz
N∂âz
∂qr

(8.12)

The three similar terms with scalar derivatives have the same interpretation of the ones in the prior section.
N∂vx
∂qr

âx,
N∂vy
∂qr

ây,
N∂vz
∂qr

âz (8.13)

But the part with unit vector derivatives is more interesting. The partial derivative of a unit vector depends on how it
changes. But unit vectors do not change in length, only in orientation.

vx
N∂âx
∂qr

, vy
N∂ây
∂qr

, vz
N∂âz
∂qr

(8.14)

You will learn in the next chapter how to interpret and use these terms to simplify the calculations of common derivatives.
But for now, just be aware of the nature of this partial derivative in N .

92 Chapter 8. Vector Differentiation

Learn Multibody Dynamics

The product rule also applies to the dot and cross products:
∂

∂qr
(v̄ · w̄) = ∂v̄

∂qr
· w̄ + v̄ · ∂w̄

∂qr
∂

∂qr
(v̄ × w̄) =

∂v̄

∂qr
× w̄ + v̄ × ∂w̄

∂qr

(8.15)

and generalizes to any series of products. Let G = f1 · · · fn be a series of products, then:
∂G

∂qr
=
∂f1
∂qr

· f2 · · · fn + f1 ·
∂f2
∂qr

· f3 · · · fn + · · ·+ f1 · · · fn−1 ·
∂fn
∂qr

(8.16)

8.4 Second Derivatives
A∂v̄
∂qr

is also a vector and, just like v̄, may be a vector function. We can thus calculate the second partial derivative with
respect to qs where s = 1 . . . n. This second partial derivative need not be taken with respect to the same reference frame
as the first partial derivative. If we first differentiate with when viewed fromA and then when viewed fromB, the second
partial derivative is:

B∂

∂qs

(
A∂v̄

∂qr

)
(8.17)

Second partials in different reference frames do not necessarily commute:
B∂

∂qs

(
A∂v̄

∂qr

)
̸=

A∂

∂qr

(
B∂v̄

∂qs

)
(8.18)

If the reference frames of each partial derivative are the same, then mixed partials do commute.

8.5 Vector Functions of Time

In multibody dynamics we are primarily concerned with how motion changes with respect to time t and our vectors and
measure numbers will often be implicit functions of time, i.e. qr(t). When that is the case the chain rule can be used to
take total derivatives:

Adv̄

dt
=

n∑
i=1

A∂v̄

∂qr(t)

dqr(t)

dt
+

A∂v̄

∂t
where r = 1, . . . , n (8.19)

Note: We will typically use the “dot” notation for time derivatives, i.e. dqdt as q̇ and
d2q
dt2 as q̈ and so on.

In SymPy Mechanics, scalar functions of time can be created like so:

t = sm.symbols('t')
q_of = sm.Function('q')

q = q_of(t)
q

q(t) (8.20)

And these scalar functions can be differentiated:

8.4. Second Derivatives 93

https://en.wikipedia.org/wiki/Symmetry_of_second_derivatives

Learn Multibody Dynamics

q.diff(t)

d

dt
q(t) (8.21)

SymPy Mechanics provides the convenience function dynamicsymbols() to create scalar functions of time just
like symbols():

q1, q2, q3 = me.dynamicsymbols('q1, q2, q3')
q1, q2, q3

(q1(t), q2(t), q3(t)) (8.22)

The time variable used in q1,q2,q3 can be accessed like so:

t = me.dynamicsymbols._t

SymPy Mechanics also provide a special printing function init_vprinting() which enables the dot notation on
functions of time:

me.init_vprinting(use_latex='mathjax')
q1.diff(t), q2.diff(t, 2), q3.diff(t, 3)

(q̇1, q̈2,
...
q 3) (8.23)

Now these scalar functions of time can be used to formulate vectors:

A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')
B.orient_body_fixed(A, (q1, q2, q3), 'ZXZ')
v = q1*A.x + q2*A.y + t**2*A.z
v

q1âx + q2ây + t2âz (8.24)

And the time derivative can be found with:

v.diff(t, A)

q̇1âx + q̇2ây + 2tâz (8.25)

Lastly, vectors have a dt() method that calculates time derivatives when viewed from a reference frame, saving a few
characters of typing:

v.dt(A)

q̇1âx + q̇2ây + 2tâz (8.26)

We will use time derivatives in the next chapters to formulate velocity and acceleration.

94 Chapter 8. Vector Differentiation

https://docs.sympy.org/latest/modules/physics/vector/api/functions.html#sympy.physics.vector.dynamicsymbols
https://docs.sympy.org/latest/modules/physics/vector/api/printing.html#sympy.physics.vector.printing.init_vprinting
https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.vector.Vector.dt

CHAPTER

NINE

ANGULAR KINEMATICS

Note: You can download this example as a Python script: angular.py or Jupyter Notebook: angular.ipynb.

import sympy as sm
import sympy.physics.mechanics as me
me.init_vprinting(use_latex='mathjax')

class ReferenceFrame(me.ReferenceFrame):

def __init__(self, *args, **kwargs):

kwargs.pop('latexs', None)

lab = args[0].lower()
tex = r'\hat{{{}}}_{}'

super(ReferenceFrame, self).__init__(*args,
latexs=(tex.format(lab, 'x'),

tex.format(lab, 'y'),
tex.format(lab, 'z')),

**kwargs)
me.ReferenceFrame = ReferenceFrame

9.1 Learning Objectives

After completing this chapter readers will be able to:
• apply the definition of angular velocity
• calculate the angular velocity of simple rotations
• choose Euler angles for a rotating reference frame
• calculate the angular velocity of reference frames described by successive simple rotations
• derive the time derivative of a vector in terms of angular velocities
• calculate the angular acceleration of a reference frame
• calculate the angular acceleration of reference frames described by successive rotations

95

Learn Multibody Dynamics

9.2 Introduction

To apply Euler’s Laws of Motion to a multibody system we will need to determine how the angular momentum of each
rigid body changes with time. This requires that we specify the angular kinematics of each body in the system: typically
both angular velocity and angular acceleration. Assuming that a reference frame is fixed to a rigid body, we will start by
finding the angular kinematics of a single reference frame and then use the properties of Successive Orientations to find
the angular kinematics of a set of related reference frames.
In the video below, a small T-handle is shown spinning in low Earth orbit gravity onboard the International Space Station.
This single rigid body has an orientation, angular velocity, and angular acceleration at any given instance of time.
The T-handle exhibits unintuitive motion, reversing back and forth periodically. This phenomena is commonly referred to
as the “Dzhanibekov effect” and Euler’s Laws of Motion predict the behavior, which we will investigate in later chapters.
For now, we will learn how to specify the angular kinematics of a reference frame in motion, such as one fixed to this
T-handle.

9.3 Angular Velocity

In Ch. Orientation of Reference Frames we learned that reference frames can be oriented relative to each other. If the
relative orientation of two reference frames change with respect to time, then we can calculate the angular velocity of
reference frame B when observed from reference frame A. This vector is written with the notation Aω̄B . If b̂x, b̂y, b̂z
are right handed mutually perpendicular unit vectors fixed in B then the angular velocity of B when observed from A is
defined as ([Kane1985], pg. 16):

Aω̄B :=

(
Adb̂y
dt

· b̂z

)
b̂x +

(
Adb̂z
dt

· b̂x

)
b̂y +

(
Adb̂x
dt

· b̂y

)
b̂z . (9.1)

Warning: Don’t confuse the left and right superscripts on direction cosine matrices and angular velocities. BCA
describes the orientation of B rotated with respect to A and the mapping of vectors in A to vectors expressed in B.
Whereas Aω̄B describes the angular velocity of B when observed from A.

If B is oriented with respect to A and mutually perpendicular unit vectors âx, ây, âz are fixed in A then there are these
general relationships among the unit vectors of each frame (see Direction Cosine Matrices):

b̂x = cxxâx + cxyây + cxz âz

b̂y = cyxâx + cyyây + cyz âz

b̂z = czxâx + czyây + czz âz

(9.2)

We can create these equations in SymPy to demonstrate how to work with the definition of angular velocity. Start by first
creating the direction cosine matrix with time varying elements:

cxx, cyy, czz = me.dynamicsymbols('c_{xx}, c_{yy}, c_{zz}')
cxy, cxz, cyx = me.dynamicsymbols('c_{xy}, c_{xz}, c_{yx}')
cyz, czx, czy = me.dynamicsymbols('c_{yz}, c_{zx}, c_{zy}')

B_C_A = sm.Matrix([[cxx, cxy, cxz],
[cyx, cyy, cyz],
[czx, czy, czz]])

and establish the orientation using orient_explicit():

96 Chapter 9. Angular Kinematics

https://en.wikipedia.org/wiki/Euler%27s_laws_of_motion
https://en.wikipedia.org/wiki/Angular_momentum
https://en.wikipedia.org/wiki/Tennis_racket_theorem
https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame.orient_explicit

Learn Multibody Dynamics

Warning: Remember this method takes the transpose of the direction cosine matrix.

A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')
B.orient_explicit(A, B_C_A.transpose())
B.dcm(A)

cxx cxy cxz
cyx cyy cyz
czx czy czz

 (9.3)

This now let’s write the B unit vectors in terms of the A unit vectors:

B.x.express(A)

cxxâx + cxyây + cxz âz (9.4)

B.y.express(A)

cyxâx + cyyây + cyz âz (9.5)

B.z.express(A)

czxâx + czyây + czz âz (9.6)

Recalling the definition of angular velocity above, each of the measure numbers of the angular velocity is calculated by
dotting the derivative of a B unit vector in A with a unit vector in B.

Ab̂y
dt is for example:

B.y.express(A).dt(A)

ċyxâx + ċyyây + ċyz âz (9.7)

Each of the measure numbers of Aω̄B are then:

mnx = me.dot(B.y.express(A).dt(A), B.z)
mnx

czxċyx + czy ċyy + czz ċyz (9.8)

9.3. Angular Velocity 97

Learn Multibody Dynamics

mny = me.dot(B.z.express(A).dt(A), B.x)
mny

cxxċzx + cxy ċzy + cxz ċzz (9.9)

mnz = me.dot(B.x.express(A).dt(A), B.y)
mnz

cyxċxx + cyy ċxy + cyz ċxz (9.10)

The angular velocity vector for an arbitrary direction cosine matrix is then:

A_w_B = mnx*B.x + mny*B.y + mnz*B.z
A_w_B

(czxċyx + czy ċyy + czz ċyz)b̂x + (cxxċzx + cxy ċzy + cxz ċzz)b̂y + (cyxċxx + cyy ċxy + cyz ċxz)b̂z (9.11)

If you know the direction cosine matrix and the derivative of its entries with respect to time, the angular velocity can
be directly calculated with the above equation.

Exercise
At one instance of time, the direction cosine matrix is:

BCA =

√
2
4

√
2
2

√
6
4

−
√
3
2 0 1

2√
2
4 −

√
2
2

√
6
4

 (9.12)

and the time derivatives of the entries of the direction cosine matrix are:

dBCA
dt

=

−
√
6
2 − 3

√
2

4 −
√
6
4 + 3

√
2

2 − 3
√
6

4 +
√
2

−1 − 1
2 −

√
3

−
√
6
2 + 3

√
2

4 −
√
6
4 + 3

√
2

2
3
√
6

4

 (9.13)

apply the definition of angular velocity to find Aω̄B .

Solution
Define the two matrices:

B_C_A = sm.Matrix([
[sm.sqrt(2)/4, sm.sqrt(2)/2, sm.sqrt(6)/4],
[-sm.sqrt(3)/2, 0, sm.S(1)/2],
[sm.sqrt(2)/4, -sm.sqrt(2)/2, sm.sqrt(6)/4]

])
B_C_A

98 Chapter 9. Angular Kinematics

Learn Multibody Dynamics

√
2
4

√
2
2

√
6
4

−
√
3
2 0 1

2√
2
4 −

√
2
2

√
6
4

 (9.14)

B_C_A_dt = sm.Matrix([
[-sm.sqrt(6)/2 - 3*sm.sqrt(2)/4, -sm.sqrt(6)/4 + 3*sm.sqrt(2)/2, -3*sm.sqrt(6)/4␣

↪→+ sm.sqrt(2)],
[-1, -sm.S(1)/2, -sm.

↪→sqrt(3)],
[-sm.sqrt(6)/2 + 3*sm.sqrt(2)/4, -sm.sqrt(6)/4 + 3*sm.sqrt(2)/2, 3*sm.

↪→sqrt(6)/4]
])
B_C_A_dt

−
√
6
2 − 3

√
2

4 −
√
6
4 + 3

√
2

2 − 3
√
6

4 +
√
2

−1 − 1
2 −

√
3

−
√
6
2 + 3

√
2

4 −
√
6
4 + 3

√
2

2
3
√
6

4

 (9.15)

Recognizing the pattern in the definition of angular velocity, rows of each matrix can be matrix multiplied to arrive at
the correct measure number:

mnx = (B_C_A[2, :]*B_C_A_dt[1, :].transpose())[0, 0]
mny = (B_C_A[0, :]*B_C_A_dt[2, :].transpose())[0, 0]
mnz = (B_C_A[1, :]*B_C_A_dt[0, :].transpose())[0, 0]

A_w_B = mnx*B.x + mny*B.y + mnz*B.z

simplify() applies simplify() to each measure number of a vector:

A_w_B.simplify()

−3
√
2

4
b̂x + (3−

√
3

2
)b̂y +

5
√
2

4
b̂z (9.16)

9.4 Angular Velocity of Simple Orientations

For a simple orientation of B with respect to A about the z axis through θ the direction cosine matrix is:

theta = me.dynamicsymbols('theta')

B_C_A = sm.Matrix([[sm.cos(theta), sm.sin(theta), 0],
[-sm.sin(theta), sm.cos(theta), 0],
[0, 0, 1]])

B_C_A

9.4. Angular Velocity of Simple Orientations 99

https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.vector.Vector.simplify
https://docs.sympy.org/latest/modules/simplify/simplify.html#sympy.simplify.simplify.simplify

Learn Multibody Dynamics

 cos (θ) sin (θ) 0
− sin (θ) cos (θ) 0

0 0 1

 (9.17)

Applying the definition of angular velocity as before, the angular velocity of B in A is:

A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')
B.orient_explicit(A, B_C_A.transpose())

mnx = me.dot(B.y.express(A).dt(A), B.z)
mny = me.dot(B.z.express(A).dt(A), B.x)
mnz = me.dot(B.x.express(A).dt(A), B.y)

A_w_B = mnx*B.x + mny*B.y + mnz*B.z
A_w_B

(sin2 (θ)θ̇ + cos2 (θ)θ̇)b̂z (9.18)

This can be simplified with a trigonometric identity. We can do this with simplify() which applies simplify()
to each measure number of a vector:

A_w_B.simplify()

θ̇b̂z (9.19)

The angular velocity of a simple orientation is simply the time rate of change of θ about b̂z = âz , the axis of the simple
orientation. SymPy Mechanics offers the ang_vel_in() method for automatically calculating the angular velocity if
a direction cosine matrix exists between the two reference frames:

A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')
B.orient_axis(A, theta, A.z)
B.ang_vel_in(A)

θ̇âz (9.20)

A simple orientation and associated simple angular velocity can be formulated for any arbitrary orientation axis vector,
not just one of the three mutually perpendicular unit vectors as shown above. There is a simple angular velocity between
two reference frames A andB if there exists a single unit vector k̂ which is fixed in both A andB for some finite time. If
this is the case, then Aω̄B = ωk̂ where ω is the time rate of change of the angle θ between a line fixed in A and another
line fixed in B both of which are perpendicular to the orientation axis k̂. We call ω = θ̇ the angular speed of B in A.
orient_axis() can take any arbitrary vector fixed in A and B to establish the orientation:

theta = me.dynamicsymbols('theta')

A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')
B.orient_axis(A, theta, A.x + A.y)
B.ang_vel_in(A)

100 Chapter 9. Angular Kinematics

https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.vector.Vector.simplify
https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame.ang_vel_in
https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame.orient_axis

Learn Multibody Dynamics

√
2θ̇

2
âx +

√
2θ̇

2
ây (9.21)

The angular speed is then:

B.ang_vel_in(A).magnitude()

√
θ̇2 (9.22)

Note: This result could more properly be |θ̇|. This is an outstanding issue in SymPy, see https://github.com/sympy/
sympy/issues/23173 for more info. This generally will not cause issues, but for certain equation of motion derivations it
could not be ideal, so beware.

9.5 Body Fixed Orientations

If you establish a Euler z-x-z orientation with angles ψ, θ, φ respectively, then the angular velocity vector is:

psi, theta, phi = me.dynamicsymbols('psi, theta, varphi')

A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')
B.orient_body_fixed(A, (psi, theta, phi), 'ZXZ')

mnx = me.dot(B.y.express(A).dt(A), B.z)
mny = me.dot(B.z.express(A).dt(A), B.x)
mnz = me.dot(B.x.express(A).dt(A), B.y)

A_w_B = mnx*B.x + mny*B.y + mnz*B.z
A_w_B.simplify()

(sin (θ) sin (φ)ψ̇ + cos (φ)θ̇)b̂x + (sin (θ) cos (φ)ψ̇ − sin (φ)θ̇)b̂y + (cos (θ)ψ̇ + φ̇)b̂z (9.23)

The method ang_vel_in() does this same calculation and gives the same result:

B.ang_vel_in(A)

(sin (θ) sin (φ)ψ̇ + cos (φ)θ̇)b̂x + (sin (θ) cos (φ)ψ̇ − sin (φ)θ̇)b̂y + (cos (θ)ψ̇ + φ̇)b̂z (9.24)

Exercise
Calculate the angular velocity of the T-handle T with respect to the space station N if t̂z is parallel to the spin axis, t̂y is
parallel with the handle axis, and t̂x is normal to the plane made by the “T” and follows from the right hand rule. Select
Euler angles that avoid gimbal lock. Hint: Read “Loss of degree of freedom with Euler angles” in the gimbal lock article.

9.5. Body Fixed Orientations 101

https://github.com/sympy/sympy/issues/23173
https://github.com/sympy/sympy/issues/23173
https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame.ang_vel_in
https://en.wikipedia.org/wiki/Gimbal_lock

Learn Multibody Dynamics

Solution

psi, theta, phi = me.dynamicsymbols('psi, theta, varphi')

N = me.ReferenceFrame('N')
T = me.ReferenceFrame('T')
T.orient_body_fixed(N, (psi, theta, phi), 'xyz')

To check whether the x-y-z body fixed rotation angles we chose are suitable for the observed moition in the video we first
estimate the likely bounds of motion in terms of multiples of π/2. For our Euler angles this seems reasonable:

0 ≤ ψ ≤ π

−π/2 ≤ θ ≤ π/2

−∞ ≤ φ ≤ ∞
(9.25)

Now we can check the direction cosine matrix at the limits of ψ and θ to see if they reduce the direction cosine matrix to
a form that indicates gimbal lock.

sm.trigsimp(T.dcm(N).xreplace({psi: 0}))

 cos (θ) cos (φ) sin (φ) − sin (θ) cos (φ)
− sin (φ) cos (θ) cos (φ) sin (θ) sin (φ)

sin (θ) 0 cos (θ)

 (9.26)

sm.trigsimp(T.dcm(N).xreplace({psi: sm.pi}))

 cos (θ) cos (φ) − sin (φ) sin (θ) cos (φ)
− sin (φ) cos (θ) − cos (φ) − sin (θ) sin (φ)

sin (θ) 0 − cos (θ)

 (9.27)

These first matrices show that we can still orient the handle if ψ is at its limits.

sm.trigsimp(T.dcm(N).xreplace({theta: -sm.pi/2}))

 0 − sin (ψ − φ) cos (ψ − φ)
0 cos (ψ − φ) sin (ψ − φ)
−1 0 0

 (9.28)

sm.trigsimp(T.dcm(N).xreplace({theta: sm.pi/2}))

0 sin (ψ + φ) − cos (ψ + φ)
0 cos (ψ + φ) sin (ψ + φ)
1 0 0

 (9.29)

These second set of matrices show that gimbal lock can occur if θ reaches its limits. But for the observed motion this
limit shouldn’t ever be reached. So we can use this Euler angle set to model the T-handle for the observed motion without
worry of gimbal lock.

102 Chapter 9. Angular Kinematics

Learn Multibody Dynamics

9.6 Time Derivatives of Vectors

Using the definition of angular velocity one can show ([Kane1985], pg. 17) that the time derivative of a unit vector fixed
in B is related to B’s angular velocity by the following theorem:

Adb̂x
dt

= Aω̄B × b̂x (9.30)

This indicates that the time derivative is always normal to the unit vector because the magnitude of the unit vector is
constant and the derivative scales with the magnitude of the angular velocity:

Adb̂x
dt

=
∣∣Aω̄B∣∣ (Aω̂B × b̂x

)
(9.31)

Now if vector v̄ = vb̂x and v is constant with respect to time we can infer:
Adv̄

dt
= v(Aω̄B × b̂x) =

Aω̄B × vb̂x = Aω̄B × v̄ (9.32)

Eq. (9.30) extends to any vector fixed in B and observed from A, making the time derivative equal to the cross product
of the angular velocity of B in A with the vector.
Now, if ū is a vector that is not fixed in B we return to the product rule in Section Product Rule and first express ū in B:

ū = u1b̂x + u2b̂y + u3b̂z (9.33)

Taking the derivative in another reference frame A by applying the product rule and applying the above theorems let us
arrive at this new theorem:

Adū

dt
= u̇1b̂x + u̇2b̂y + u̇3b̂z + u1

Adb̂x
dt

+ u2
Adb̂y
dt

+ u3
Adb̂z
dt

Adū

dt
=

Bdū

dt
+ u1

Aω̄B × b̂x + u2
Aω̄B × b̂y + u3

Aω̄B × b̂z

Adū

dt
=

Bdū

dt
+ Aω̄B × ū

(9.34)

Eq. (9.34) is a powerful equation because it lets us differentiate any vector if we know how it changes in a rotating
reference frame relative to the reference frame we are observing the change from.
We can show that Eq. (9.34) holds with an example. Take a z-x orientation and an arbitrary vector that is not fixed in B:

A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')
B.orient_body_fixed(A, (psi, theta, 0), 'ZXZ')

u1, u2, u3 = me.dynamicsymbols('u1, u2, u3')

u = u1*B.x + u2*B.y + u3*B.z
u

u1b̂x + u2b̂y + u3b̂z (9.35)

As we learned in the last chapter we can express the vector in A and then take the time derivative of the measure
numbers to arrive at Adū

dt :

9.6. Time Derivatives of Vectors 103

Learn Multibody Dynamics

u.express(A)

(u1 cos (ψ)− u2 sin (ψ) cos (θ) + u3 sin (ψ) sin (θ))âx + (u1 sin (ψ) + u2 cos (ψ) cos (θ)− u3 sin (θ) cos (ψ))ây + (u2 sin (θ) + u3 cos (θ))âz
(9.36)

u.express(A).dt(A)

(−u1 sin (ψ)ψ̇ + u2 sin (ψ) sin (θ)θ̇ − u2 cos (ψ) cos (θ)ψ̇ + u3 sin (ψ) cos (θ)θ̇ + u3 sin (θ) cos (ψ)ψ̇ + sin (ψ) sin (θ)u̇3 − sin (ψ) cos (θ)u̇2 + cos (ψ)u̇1)âx + (u1 cos (ψ)ψ̇ − u2 sin (ψ) cos (θ)ψ̇ − u2 sin (θ) cos (ψ)θ̇ + u3 sin (ψ) sin (θ)ψ̇ − u3 cos (ψ) cos (θ)θ̇ + sin (ψ)u̇1 − sin (θ) cos (ψ)u̇3 + cos (ψ) cos (θ)u̇2)ây + (u2 cos (θ)θ̇ − u3 sin (θ)θ̇ + sin (θ)u̇2 + cos (θ)u̇3)âz
(9.37)

But applying the theorem above we can find the derivative with a cross product. The nice aspect of this formulation is
there is no need to express the vector in A. First Bdū

dt :

u.dt(B)

u̇1b̂x + u̇2b̂y + u̇3b̂z (9.38)

and then Aω̄B :

A_w_B = B.ang_vel_in(A)
A_w_B

θ̇b̂x + sin (θ)ψ̇b̂y + cos (θ)ψ̇b̂z (9.39)
Adū
dt is then:

u.dt(B) + me.cross(A_w_B, u)

(−u2 cos (θ)ψ̇ + u3 sin (θ)ψ̇ + u̇1)b̂x + (u1 cos (θ)ψ̇ − u3θ̇ + u̇2)b̂y + (−u1 sin (θ)ψ̇ + u2θ̇ + u̇3)b̂z (9.40)

which is a relatively simple form of the derivative when expressed in the rotating reference frame.
We can show that the first result is equivalent by expressing in B and simplifying:

u.express(A).dt(A).express(B).simplify()

(−u2 cos (θ)ψ̇ + u3 sin (θ)ψ̇ + u̇1)b̂x + (u1 cos (θ)ψ̇ − u3θ̇ + u̇2)b̂y + (−u1 sin (θ)ψ̇ + u2θ̇ + u̇3)b̂z (9.41)

Exercise
Show that .dt() uses the theorem Eq. (9.34) internally.

Solution

104 Chapter 9. Angular Kinematics

Learn Multibody Dynamics

u.dt(A)

(−u2 cos (θ)ψ̇ + u3 sin (θ)ψ̇ + u̇1)b̂x + (u1 cos (θ)ψ̇ − u3θ̇ + u̇2)b̂y + (−u1 sin (θ)ψ̇ + u2θ̇ + u̇3)b̂z (9.42)

u.dt(B) + me.cross(A_w_B, u)

(−u2 cos (θ)ψ̇ + u3 sin (θ)ψ̇ + u̇1)b̂x + (u1 cos (θ)ψ̇ − u3θ̇ + u̇2)b̂y + (−u1 sin (θ)ψ̇ + u2θ̇ + u̇3)b̂z (9.43)

9.7 Addition of Angular Velocity

Similar to the relationship in direction cosine matrices of successive orientations (Sec. Successive Orientations), there is a
relationship among the angular velocities of successively oriented reference frames ([Kane1985], pg. 24) but it relies on
the addition of vectors instead of multiplication of matrices. The theorem is:

Aω̄Z = Aω̄B + Bω̄C + . . .+ Y ω̄Z (9.44)

We can demonstrate this by creating three simple orientations for a Euler y-x-y orientation:

psi, theta, phi = me.dynamicsymbols('psi, theta, varphi')

A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')
C = me.ReferenceFrame('C')
D = me.ReferenceFrame('D')

B.orient_axis(A, psi, A.y)
C.orient_axis(B, theta, B.x)
D.orient_axis(C, phi, C.y)

The simple angular velocity of each successive orientation is shown:

A_w_B = B.ang_vel_in(A)
A_w_B

ψ̇ây (9.45)

B_w_C = C.ang_vel_in(B)
B_w_C

θ̇b̂x (9.46)

9.7. Addition of Angular Velocity 105

Learn Multibody Dynamics

C_w_D = D.ang_vel_in(C)
C_w_D

φ̇ĉy (9.47)

Summing the successive angular velocities gives the compact result:

A_w_D = A_w_B + B_w_C + C_w_D
A_w_D

ψ̇ây + θ̇b̂x + φ̇ĉy (9.48)

Similarly, we can skip the auxiliary frames and form the relationship between A and D directly and calculate Aω̄D:

A2 = me.ReferenceFrame('A')
D2 = me.ReferenceFrame('D')
D2.orient_body_fixed(A2, (psi, theta, phi), 'YXY')
D2.ang_vel_in(A2).simplify()

(sin (θ) sin (φ)ψ̇ + cos (φ)θ̇)d̂x + (cos (θ)ψ̇ + φ̇)d̂y + (− sin (θ) cos (φ)ψ̇ + sin (φ)θ̇)d̂z (9.49)

If we express our prior result in D we see the results are the same:

A_w_D.express(D)

(sin (θ) sin (φ)ψ̇ + cos (φ)θ̇)d̂x + (cos (θ)ψ̇ + φ̇)d̂y + (− sin (θ) cos (φ)ψ̇ + sin (φ)θ̇)d̂z (9.50)

9.8 Angular Acceleration

The angular acceleration of B when observed from A is defined as:

AᾱB :=
Ad

dt
Aω̄B (9.51)

Aω̄B is simply a vector so we can time differentiate it with respect to frame A. Using Eq. (9.34) we can write:
Ad

dt
Aω̄B =

Bd

dt
Aω̄B + Aω̄B × Aω̄B (9.52)

and since Aω̄B × Aω̄B = 0:
Ad

dt
Aω̄B =

Bd

dt
Aω̄B (9.53)

which is rather convenient.
With SymPy Mechanics AᾱB is found automatically with ang_acc_in() if the orientations are established. For a
simple orientation:

106 Chapter 9. Angular Kinematics

https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame.ang_acc_in

Learn Multibody Dynamics

theta = me.dynamicsymbols('theta')

A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')
B.orient_axis(A, theta, A.z)
B.ang_acc_in(A)

θ̈âz (9.54)

Similarly we can calculate the derivative manually:

B.ang_vel_in(A).dt(A)

θ̈âz (9.55)

and see that that Eq. (9.53) holds:

B.ang_vel_in(A).dt(B)

θ̈âz (9.56)

For a body fixed orientation we get:

psi, theta, phi = me.dynamicsymbols('psi, theta, varphi')

A = me.ReferenceFrame('A')
D = me.ReferenceFrame('D')
D.orient_body_fixed(A, (psi, theta, phi), 'YXY')

D.ang_acc_in(A).simplify()

(sin (θ) sin (φ)ψ̈ + sin (θ) cos (φ)ψ̇φ̇+ sin (φ) cos (θ)ψ̇θ̇ − sin (φ)θ̇φ̇+ cos (φ)θ̈)d̂x + (− sin (θ)ψ̇θ̇ + cos (θ)ψ̈ + φ̈)d̂y + (sin (θ) sin (φ)ψ̇φ̇− sin (θ) cos (φ)ψ̈ + sin (φ)θ̈ − cos (θ) cos (φ)ψ̇θ̇ + cos (φ)θ̇φ̇)d̂z
(9.57)

and with manual derivatives of the measure numbers:

D.ang_vel_in(A).dt(A).simplify()

(sin (θ) sin (φ)ψ̈ + sin (θ) cos (φ)ψ̇φ̇+ sin (φ) cos (θ)ψ̇θ̇ − sin (φ)θ̇φ̇+ cos (φ)θ̈)d̂x + (− sin (θ)ψ̇θ̇ + cos (θ)ψ̈ + φ̈)d̂y + (sin (θ) sin (φ)ψ̇φ̇− sin (θ) cos (φ)ψ̈ + sin (φ)θ̈ − cos (θ) cos (φ)ψ̇θ̇ + cos (φ)θ̇φ̇)d̂z
(9.58)

D.ang_vel_in(A).dt(D).simplify()

(sin (θ) sin (φ)ψ̈ + sin (θ) cos (φ)ψ̇φ̇+ sin (φ) cos (θ)ψ̇θ̇ − sin (φ)θ̇φ̇+ cos (φ)θ̈)d̂x + (− sin (θ)ψ̇θ̇ + cos (θ)ψ̈ + φ̈)d̂y + (sin (θ) sin (φ)ψ̇φ̇− sin (θ) cos (φ)ψ̈ + sin (φ)θ̈ − cos (θ) cos (φ)ψ̇θ̇ + cos (φ)θ̇φ̇)d̂z
(9.59)

Note the equivalence regardless of the frame the change in velocity is observed from.

9.8. Angular Acceleration 107

Learn Multibody Dynamics

9.9 Addition of Angular Acceleration

The calculation of angular acceleration is relatively simple due to the equivalence when observed from different reference
frames, but the addition of angular velocities explained in Sec. Addition of Angular Velocity does not extend to angular
accelerations. Adding successive angular accelerations does not result in a valid total angular acceleration.

AᾱZ ̸= AᾱB + BᾱC + . . .+ Y ᾱZ (9.60)

We can show by example that an equality in Eq. (9.60) will not hold. Coming back to the successive orientations that
form a y-x-y Euler rotation, we can test the relationship.

psi, theta, phi = me.dynamicsymbols('psi, theta, varphi')

A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')
C = me.ReferenceFrame('C')
D = me.ReferenceFrame('D')

B.orient_axis(A, psi, A.y)
C.orient_axis(B, theta, B.x)
D.orient_axis(C, phi, C.y)

The simple angular acceleration of each successive orientation is shown:

A_alp_B = B.ang_acc_in(A)
A_alp_B

ψ̈ây (9.61)

B_alp_C = C.ang_acc_in(B)
B_alp_C

θ̈b̂x (9.62)

C_alp_D = D.ang_acc_in(C)
C_alp_D

φ̈ĉy (9.63)

Summing the successive angular accelerations and expressing the resulting vector in the body fixed reference frame D
gives this result:

A_alp_D = A_alp_B + B_alp_C + C_alp_D
A_alp_D.express(D).simplify()

108 Chapter 9. Angular Kinematics

Learn Multibody Dynamics

(sin (θ) sin (φ)ψ̈ + cos (φ)θ̈)d̂x + (cos (θ)ψ̈ + φ̈)d̂y + (− sin (θ) cos (φ)ψ̈ + sin (φ)θ̈)d̂z (9.64)

which is not equal to the correct, more complex, result:

D.ang_vel_in(A).dt(A).express(D).simplify()

(sin (θ) sin (φ)ψ̈ + sin (θ) cos (φ)ψ̇φ̇+ sin (φ) cos (θ)ψ̇θ̇ − sin (φ)θ̇φ̇+ cos (φ)θ̈)d̂x + (− sin (θ)ψ̇θ̇ + cos (θ)ψ̈ + φ̈)d̂y + (sin (θ) sin (φ)ψ̇φ̇− sin (θ) cos (φ)ψ̈ + sin (φ)θ̈ − cos (θ) cos (φ)ψ̇θ̇ + cos (φ)θ̇φ̇)d̂z
(9.65)

Angular accelerations derived from successive orientations require an explicit differentiation of the associated angular
velocity vector. There unfortunately is no theorem that simplifies this calculation as we see with orientation and angular
velocity.

9.9. Addition of Angular Acceleration 109

Learn Multibody Dynamics

110 Chapter 9. Angular Kinematics

CHAPTER

TEN

TRANSLATIONAL KINEMATICS

Note: You can download this example as a Python script: translational.py or Jupyter Notebook:
translational.ipynb.

10.1 Learning Objectives

After completing this chapter readers will be able to:
• calculate the velocity and acceleration of a point in a multibody system
• apply the one and two point theorems to calculate velocity and acceleration of points
• identify the tangential, centripetal, and Coriolis acceleration components

10.2 Introduction

In multibody dynamics, we are going to need to calculate the translation velocities and accelerations of points. We will
learn that the acceleration of the mass centers of the bodies in a multibody system will be a primary ingredient in forming
Newton’s Second Law of motion F̄ = mā. This chapter will equip you to calculate the relative translational velocities
and accelerations of points in a system.

10.3 Translational Velocity

If a point P is moving with respect to a pointO that is fixed in reference frameA the translational velocity vector of point
P is defined as:

Av̄P :=
Adr̄P/O

dt
(10.1)

We also know from Eq. (9.34) that the time derivative of any vector can be written in terms of the angular velocity of
the associated reference frames, so:

Av̄P =
Adr̄P/O

dt

=
Bdr̄P/O

dt
+ Aω̄B × r̄P/O

= B v̄P + Aω̄B × r̄P/O

(10.2)

111

Learn Multibody Dynamics

This formulation will allow us to utilize different reference frames to simplify velocity calculations. Take for example this
piece of kinetic art that now stands in Rotterdam:

Fig. 10.1: Kinetic sculpture “Two Turning Vertical Rectangles” (1971) in Rotterdam/The Netherlands (FOP) by George
Rickey. https://nl.wikipedia.org/wiki/Two_Turning_Vertical_Rectangles

K.Siereveld, Public domain, via Wikimedia Commons

User https://www.reddit.com/user/stravalnak posted this video of the sculpture to Reddit during the 2022 storm Eunice:
and it looks very dangerous. It would be interesting to know the velocity and acceleration of various points on this
sculpture. First, we sketch a configuration diagram:
Now let’s use SymPy Mechanics to calculate Eq. (10.2) for this example.

import sympy as sm
import sympy.physics.mechanics as me
me.init_vprinting(use_latex='mathjax')

class ReferenceFrame(me.ReferenceFrame):

def __init__(self, *args, **kwargs):

kwargs.pop('latexs', None)

lab = args[0].lower()
tex = r'\hat{{{}}}_{}'

super(ReferenceFrame, self).__init__(*args,
latexs=(tex.format(lab, 'x'),

tex.format(lab, 'y'),
tex.format(lab, 'z')),

**kwargs)
me.ReferenceFrame = ReferenceFrame

Set up the orientations:

alpha, beta = me.dynamicsymbols('alpha, beta')

N = me.ReferenceFrame('N')
A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')

A.orient_axis(N, alpha, N.z)
B.orient_axis(A, beta, A.x)

Write out the position vectors to P , S, and Q:

112 Chapter 10. Translational Kinematics

https://nl.wikipedia.org/wiki/Two_Turning_Vertical_Rectangles
https://www.reddit.com/user/stravalnak

Learn Multibody Dynamics

Fig. 10.2: Sketch of one of the two plates mounted on the rotating T-support. Reference framesN , A, and B are shown.
Also note the pigeon trying to walk across one edge of the plate at point R.

Pigeon SVG from https://freesvg.org/vector-clip-art-of-homing-pigeon Public Domain

10.3. Translational Velocity 113

https://freesvg.org/vector-clip-art-of-homing-pigeon

Learn Multibody Dynamics

h, d, w, c, l = sm.symbols('h, d, w, c, l')

r_O_P = h*N.z
r_P_S = -d*A.x
r_S_Q = -w*B.x - (c + l/2)*B.z

r_O_P, r_P_S, r_S_Q

(
hn̂z, −dâx, −wb̂x + (−c− l

2
)b̂z

)
(10.3)

Now calculate:
N v̄S = Av̄S + N ω̄A × r̄S/O (10.4)

S is not moving when observed from A so:

(r_O_P + r_P_S).dt(A)

0 (10.5)

The second term does have a value and can be found with these two components:

A.ang_vel_in(N)

α̇n̂z (10.6)

me.cross(A.ang_vel_in(N), r_O_P + r_P_S)

−dα̇ây (10.7)

giving N v̄S :

N_v_S = (r_O_P + r_P_S).dt(A) + me.cross(A.ang_vel_in(N), r_O_P + r_P_S)
N_v_S

−dα̇ây (10.8)

Similarly for point Q:

(r_O_P + r_P_S + r_S_Q).dt(B)

−h sin (α)β̇n̂x + h cos (α)β̇n̂y (10.9)

114 Chapter 10. Translational Kinematics

Learn Multibody Dynamics

me.cross(B.ang_vel_in(N), r_O_P + r_P_S + r_S_Q)

h sin (α)β̇n̂x − h cos (α)β̇n̂y − dα̇ây +

(
−c− l

2

)
sin (β)α̇b̂x + (−w cos (β)α̇−

(
−c− l

2

)
β̇)b̂y + w sin (β)α̇b̂z

(10.10)

N_v_Q = (r_O_P + r_P_S + r_S_Q).dt(B) + me.cross(B.ang_vel_in(N), r_O_P + r_P_S + r_S_
↪→Q)
N_v_Q

−dα̇ây +
(
−c− l

2

)
sin (β)α̇b̂x + (−w cos (β)α̇−

(
−c− l

2

)
β̇)b̂y + w sin (β)α̇b̂z (10.11)

SymPy Mechanics provides the Point object that simplifies working with position vectors. Start by creating points
and setting relative positions among points with set_pos().

O = me.Point('O')
P = me.Point('P')
S = me.Point('S')
Q = me.Point('Q')

P.set_pos(O, h*N.z)
S.set_pos(P, -d*A.x)
Q.set_pos(S, -w*B.x - (c + l/2)*B.z)

Once relative positions among points are established you can request the position vector between any pair of points that
are connected by the set_pos() statements, for example r̄Q/O is:

Q.pos_from(O)

−wb̂x + (−c− l

2
)b̂z − dâx + hn̂z (10.12)

Also, once the position vectors are established, velocities can be calculated. You will always explicitly need to set the
velocity of at least one point in a collection of points before the velocities of the other points can be calculated. In our
case, we can set N v̄O = 0 with set_vel():

O.set_vel(N, 0)

Note: SymPy Mechanics has no way of knowing whether the sculpture is fixed on the road or floating around with some
constant speed. All the relative velocities of the various points would not be changed in those two scenarios. Hence, at
least the speed of one point must be specified.

Now the velocity in N for any point that is connected to O by the prior set_pos() statements can be found with the
vel() method:

Q.vel(N)

10.3. Translational Velocity 115

https://docs.sympy.org/latest/modules/physics/vector/api/kinematics.html#sympy.physics.vector.point.Point
https://docs.sympy.org/latest/modules/physics/vector/api/kinematics.html#sympy.physics.vector.point.Point.set_pos
https://docs.sympy.org/latest/modules/physics/vector/api/kinematics.html#sympy.physics.vector.point.Point.set_pos
https://docs.sympy.org/latest/modules/physics/vector/api/kinematics.html#sympy.physics.vector.point.Point.set_vel
https://docs.sympy.org/latest/modules/physics/vector/api/kinematics.html#sympy.physics.vector.point.Point.set_pos
https://docs.sympy.org/latest/modules/physics/vector/api/kinematics.html#sympy.physics.vector.point.Point.vel

Learn Multibody Dynamics

(
−c− l

2

)
sin (β)α̇b̂x + (−w cos (β)α̇−

(
−c− l

2

)
β̇)b̂y + w sin (β)α̇b̂z − dα̇ây (10.13)

This gives the same result as manually calculated above.

Warning: vel() method will calculate velocities naively, i.e. not necessarily give the simplest form.

Exercise
Calculate the velocity of point Bc when observed from reference frame A.

Solution
Bc is fixed in B and thus its velocity is zero in B. S is fixed in A. Using (10.2) we can then write:

Av̄Bc = B v̄Bc + Aω̄B × r̄Bc/S (10.14)

This results in:

Bc = me.Point('B_c')
Bc.set_pos(S, -c*B.z - w/2*A.x)
me.cross(B.ang_vel_in(A), Bc.pos_from(S))

cβ̇b̂y (10.15)

10.4 Velocity Two Point Theorem

If there are two points P and S fixed in a reference frame A and you know the angular velocity N ω̄A and the velocity
N v̄P then N v̄S can be calculated if the vector r̄S/P , which is fixed in A, is known. The following theorem provides a
convenient formulation:

N v̄S =
Ndr̄S/O

dt

=
Nd
(
r̄P/O + r̄S/P

)
dt

= N v̄P +
Ndr̄S/P

dt

= N v̄P + N ω̄A × r̄S/P

(10.16)

For our example kinetic sculpture, both O and P are fixed in N , so N v̄P = 0:

N_v_P = 0*N.z

Only the cross product then needs to be formed:

116 Chapter 10. Translational Kinematics

https://docs.sympy.org/latest/modules/physics/vector/api/kinematics.html#sympy.physics.vector.point.Point.vel

Learn Multibody Dynamics

N_v_S = N_v_P + me.cross(A.ang_vel_in(N), S.pos_from(P))
N_v_S

−dα̇ây (10.17)

Using pairs of points both fixed in the same reference frame and Eq. (10.16) gives a compact result.
Point objects have the v2pt_theory()method for applying the above equation given the other point fixed in the same
frame, the frame you want the velocity in, and the frame both points are fixed in. The velocity of P is set to zero using
set_vel() first to ensure we start with a known velocity.

P.set_vel(N, 0)
S.v2pt_theory(P, N, A)

−dα̇ây (10.18)

Note that when you call v2pt_theory() it also sets the velocity of point S to this version of the velocity vector:

S.vel(N)

−dα̇ây (10.19)

Both points S and Q are fixed in reference frame B and we just calculated N v̄S , so we can use the two point theorem
to find the velocity of Q in a similar fashion by applying:

N v̄Q = N v̄S + N ω̄B × r̄Q/S (10.20)

First, using the manual calculation:

N_v_Q = N_v_S + me.cross(B.ang_vel_in(N), Q.pos_from(S))
N_v_Q

−dα̇ây +
(
−c− l

2

)
sin (β)α̇b̂x + (−w cos (β)α̇−

(
−c− l

2

)
β̇)b̂y + w sin (β)α̇b̂z (10.21)

and then with the v2pt_theory():

Q.v2pt_theory(S, N, B)

−dα̇ây +
(
−c− l

2

)
sin (β)α̇b̂x + (−w cos (β)α̇−

(
−c− l

2

)
β̇)b̂y + w sin (β)α̇b̂z (10.22)

Exercise
Calculate the velocity of the center of mass of the plate Bc using the two point theorem.

Solution

10.4. Velocity Two Point Theorem 117

https://docs.sympy.org/latest/modules/physics/vector/api/kinematics.html#sympy.physics.vector.point.Point.v2pt_theory
https://docs.sympy.org/latest/modules/physics/vector/api/kinematics.html#sympy.physics.vector.point.Point.set_vel
https://docs.sympy.org/latest/modules/physics/vector/api/kinematics.html#sympy.physics.vector.point.Point.v2pt_theory
https://docs.sympy.org/latest/modules/physics/vector/api/kinematics.html#sympy.physics.vector.point.Point.v2pt_theory

Learn Multibody Dynamics

Bc = me.Point('B_c')
Bc.set_pos(S, -c*B.z - w/2*A.x)
Bc.v2pt_theory(S, N, B)

(−dα̇− wα̇

2
)ây − c sin (β)α̇b̂x + cβ̇b̂y (10.23)

10.5 Velocity One Point Theorem

If you are interested in the velocity of a point R that is moving in a reference frame B and you know the velocity of a
point S fixed in B then the velocity of R is the sum of it’s velocity when observed from B and the velocity of a point
fixed in B at R at that instant of time. Put into mathematical terms we get:

N v̄R = B v̄R + N v̄T (10.24)

where point T is a point that coincides with R at that instant.
Combined with the two point theorem for T , you can write:

N v̄R = B v̄R + N v̄S + N ω̄B × r̄R/S (10.25)

In our kinetic sculpture example, if the pigeonR is walking at a distance s in the b̂x direction from the upper right corner,
then we can calculate the velocity of the pigeon when observed from the N reference frame. First establish the position
of R:

s = me.dynamicsymbols('s')
t = me.dynamicsymbols._t

R = me.Point('R')
R.set_pos(Q, l*B.z + s*B.x)

The velocity of the pigeon when observed from B is:

B_v_R = s.diff(t)*B.x
B_v_R

ṡb̂x (10.26)

Now the other terms:

r_S_R = R.pos_from(S)
r_S_R

(−w + s)b̂x + (−c+ l

2
)b̂z (10.27)

118 Chapter 10. Translational Kinematics

Learn Multibody Dynamics

N_v_T = N_v_S + me.cross(B.ang_vel_in(N), r_S_R)
N_v_T

−dα̇ây +
(
−c+ l

2

)
sin (β)α̇b̂x + (−

(
−c+ l

2

)
β̇ + (−w + s) cos (β)α̇)b̂y − (−w + s) sin (β)α̇b̂z (10.28)

And finally the velocity of the pigeon when observed from N :

N_v_R = B_v_R + N_v_T
N_v_R

(

(
−c+ l

2

)
sin (β)α̇+ ṡ)b̂x + (−

(
−c+ l

2

)
β̇ + (−w + s) cos (β)α̇)b̂y − (−w + s) sin (β)α̇b̂z − dα̇ây (10.29)

There is a method v1pt_theory() that does this calculation. It does require that the point S’s, in our case, velocity
is fixed in B before making the computation:

S.set_vel(B, 0)
R.v1pt_theory(S, N, B)

(

(
−c+ l

2

)
sin (β)α̇+ ṡ)b̂x + (−

(
−c+ l

2

)
β̇ + (−w + s) cos (β)α̇)b̂y − (−w + s) sin (β)α̇b̂z − dα̇ây (10.30)

10.6 Translational Acceleration

The acceleration of point P in reference frame A is defined as

AāP :=
AdAv̄P

dt
(10.31)

Using SymPy Mechanics, the acceleration of a point in a reference frame can be calculated with acc():

S.acc(N)

dα̇2âx − dα̈ây (10.32)

10.7 Acceleration Two Point Theorem

The two point theorem above has a corollary for acceleration. Starting with the velocity theorem:

N v̄S = N v̄P + N ω̄A × r̄S/P (10.33)

10.6. Translational Acceleration 119

https://docs.sympy.org/latest/modules/physics/vector/api/kinematics.html#sympy.physics.vector.point.Point.v1pt_theory
https://docs.sympy.org/latest/modules/physics/vector/api/kinematics.html#sympy.physics.vector.point.Point.acc

Learn Multibody Dynamics

the acceleration can be found by applying the definition of acceleration:

N āS =
Nd
(
N v̄P

)
dt

+
Nd
(
N ω̄A × r̄S/P

)
dt

= N āP +
Nd
(
N ω̄A

)
dt

× r̄S/P + N ω̄A ×
Nd
(
r̄S/P

)
dt

= N āP + N ᾱA × r̄S/P + N ω̄A ×
(
N ω̄A × r̄S/P

) (10.34)

This presentation of the acceleration shows the tangential component of acceleration:
N ᾱA × r̄S/P (10.35)

N ᾱA can be calculated with ang_acc_in():

me.cross(A.ang_acc_in(N), S.pos_from(P))

−dα̈ây (10.36)

The tangential component is always tangent to the motion path of P . The last term is the radial component of acceler-
ation, also called centripetal acceleration:

N ω̄A ×
(
N ω̄A × r̄S/P

)
(10.37)

which can also be calculated using the methods of with Point and ReferenceFrame:

me.cross(A.ang_vel_in(N), me.cross(A.ang_vel_in(N), S.pos_from(P)))

dα̇2âx (10.38)

This acceleration component is always normal to the motion path of P .
Lastly, a2pt_theory() calculates the acceleration using this theorem with:

S.a2pt_theory(P, N, A)

dα̇2âx − dα̈ây (10.39)

where S and P are fixed in A and the velocity is desired in N .

Exercise
Calculate the acceleration of point Q with the two point theorem.

Solution

Q.a2pt_theory(S, N, B)

dα̇2âx − dα̈ây + (w sin2 (β)α̇2 +

(
−c− l

2

)(
sin (β)α̈+ cos (β)α̇β̇

)
−
(
−w cos (β)α̇−

(
−c− l

2

)
β̇

)
cos (β)α̇)b̂x + (−w

(
− sin (β)α̇β̇ + cos (β)α̈

)
− w sin (β)α̇β̇ +

(
−c− l

2

)
sin (β) cos (β)α̇2 −

(
−c− l

2

)
β̈)b̂y + (w

(
sin (β)α̈+ cos (β)α̇β̇

)
−
(
−c− l

2

)
sin2 (β)α̇2 +

(
−w cos (β)α̇−

(
−c− l

2

)
β̇

)
β̇)b̂z

(10.40)

120 Chapter 10. Translational Kinematics

https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame.ang_acc_in
https://docs.sympy.org/latest/modules/physics/vector/api/kinematics.html#sympy.physics.vector.point.Point
https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.frame.ReferenceFrame
https://docs.sympy.org/latest/modules/physics/vector/api/kinematics.html#sympy.physics.vector.point.Point.a2pt_theory

Learn Multibody Dynamics

10.8 Acceleration One Point Theorem

The velocity one point theorem also can be time differentiated to see its acceleration form. Starting with the expanded
one point theorem for velocity:

N v̄R = B v̄R + N v̄S + N ω̄B × r̄R/S (10.41)

and taking the time derivative in the frame N the corollary formula for acceleration can be derived:

N āR =
NdB v̄R

dt
+

NdN v̄S

dt
+

NdN ω̄B × r̄R/S

dt

=
NdN v̄R

dt
+ N ω̄B × N v̄R + N āS +

NdN ω̄B

dt
× r̄R/S + N ω̄B ×

Ndr̄R/S

dt

= B āR + N ω̄B × B v̄R + N āS + N ᾱB × r̄R/S + N ω̄B ×
(
B v̄T + N ω̄B × r̄R/S

)
= B āR + 2N ω̄B × B v̄R + N āS + N ᾱB × r̄R/S + N ω̄B ×

(
N ω̄B × r̄R/S

)
(10.42)

One of my dynamics professors, Dean Karnopp, liked to call this equation the “five term beast”, as it is about the nastiest
equation that shows up in dynamics. Looking carefully at this form, the result of the two point theorem is embedded, so
this is equivalent to:

N āR = B āR + N āT + 2N ω̄B × B v̄R (10.43)

where T is again the point fixed at R in this instant of time. The tangential and centripetal acceleration terms are present
in N āT . The term 2N ω̄B × B v̄R is the Coriolis acceleration that arises from R moving in the rotating frame B.
The three terms in Eq. (10.43) can be calculated for our pigeon like so:

B_a_R = R.acc(B)
B_a_R

s̈b̂x (10.44)

N_a_T = R.a2pt_theory(S, N, B)
N_a_T

dα̇2âx − dα̈ây + (

(
−c+ l

2

)(
sin (β)α̈+ cos (β)α̇β̇

)
− (−w + s) sin2 (β)α̇2 −

(
−
(
−c+ l

2

)
β̇ + (−w + s) cos (β)α̇

)
cos (β)α̇)b̂x + (

(
−c+ l

2

)
sin (β) cos (β)α̇2 −

(
−c+ l

2

)
β̈ + (−w + s)

(
− sin (β)α̇β̇ + cos (β)α̈

)
+ (−w + s) sin (β)α̇β̇)b̂y + (−

(
−c+ l

2

)
sin2 (β)α̇2 − (−w + s)

(
sin (β)α̈+ cos (β)α̇β̇

)
+

(
−
(
−c+ l

2

)
β̇ + (−w + s) cos (β)α̇

)
β̇)b̂z

(10.45)

2*me.cross(B.ang_vel_in(N), R.vel(B))

2 cos (β)α̇ṡb̂y − 2 sin (β)α̇ṡb̂z (10.46)

The a1pt_theory() method can also be used to make this calculation:

10.8. Acceleration One Point Theorem 121

https://en.wikipedia.org/wiki/Coriolis_force
https://docs.sympy.org/latest/modules/physics/vector/api/kinematics.html#sympy.physics.vector.point.Point.a1pt_theory

Learn Multibody Dynamics

R.a1pt_theory(S, N, B)

(

(
−c+ l

2

)(
sin (β)α̈+ cos (β)α̇β̇

)
− (−w + s) sin2 (β)α̇2 −

(
−
(
−c+ l

2

)
β̇ + (−w + s) cos (β)α̇

)
cos (β)α̇+ s̈)b̂x + (

(
−c+ l

2

)
sin (β) cos (β)α̇2 −

(
−c+ l

2

)
β̈ + (−w + s)

(
− sin (β)α̇β̇ + cos (β)α̈

)
+ (−w + s) sin (β)α̇β̇ + 2 cos (β)α̇ṡ)b̂y + (−

(
−c+ l

2

)
sin2 (β)α̇2 − (−w + s)

(
sin (β)α̈+ cos (β)α̇β̇

)
+

(
−
(
−c+ l

2

)
β̇ + (−w + s) cos (β)α̇

)
β̇ − 2 sin (β)α̇ṡ)b̂z + dα̇2âx − dα̈ây

(10.47)

The acceleration of the pigeon when viewed from N is no flapping matter.

122 Chapter 10. Translational Kinematics

CHAPTER

ELEVEN

HOLONOMIC CONSTRAINTS

Note: You can download this example as a Python script: configuration.py or Jupyter Notebook:
configuration.ipynb.

import sympy as sm
import sympy.physics.mechanics as me
me.init_vprinting(use_latex='mathjax')

class ReferenceFrame(me.ReferenceFrame):

def __init__(self, *args, **kwargs):

kwargs.pop('latexs', None)

lab = args[0].lower()
tex = r'\hat{{{}}}_{}'

super(ReferenceFrame, self).__init__(*args,
latexs=(tex.format(lab, 'x'),

tex.format(lab, 'y'),
tex.format(lab, 'z')),

**kwargs)
me.ReferenceFrame = ReferenceFrame

11.1 Learning Objectives

After completing this chapter readers will be able to:
• derive and specify the configuration constraint (holonomic constraint) equations for a system of connected rigid
bodies

• numerically solve a set of holonomic constraints for the dependent coordinates
• apply point configuration constraints as a general approach to constraining a system
• calculate the number of generalized coordinates
• choose generalized coordinates
• calculate velocities when holonomic constraints are present

123

Learn Multibody Dynamics

11.2 Four-Bar Linkage

Consider the linkage shown below:

Fig. 11.1: a) Shows four links in a plane A, B, C, and N with respective lengths la, lb, lc, ln connected in a closed loop
at points P1, P2, P3, P4. b) Shows the same linkage that has been separated at point P4 to make it an open chain of links.

This is a planar four-bar linkage with reference frames N,A,B,C attached to each bar. Four bar linkages are used in a
wide variety of mechanisms. One you may be familiar with is this rear suspension on a mountain bicycle:
Depending on the length of the links, different motion types are possible. Fig. 11.3 shows some of the possible motions.
A four bar linkage is an example of a closed kinematic loop. We can define this loop by disconnecting the loop at some
location, P4 in our case, and forming the open loop vector equations to points that should coincide. In the case of Fig.
11.1 there are two vector paths to point P4 from P1, for example:

r̄P4/P1 = lnn̂x

r̄P4/P1 = r̄P2/P1 + r̄P3/P2 + r̄P4/P3 = laâx + lbb̂x + lcĉx
(11.1)

For the loop to close, the two vector paths must equate. Keep in mind that we assume that the lengths are constant and
the angles change with time. To define this loop in SymPy, setup the variables, reference frames, and points:

q1, q2, q3 = me.dynamicsymbols('q1, q2, q3')
la, lb, lc, ln = sm.symbols('l_a, l_b, l_c, l_n')

N = me.ReferenceFrame('N')
A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')
C = me.ReferenceFrame('C')

A.orient_axis(N, q1, N.z)
B.orient_axis(A, q2, A.z)
C.orient_axis(B, q3, B.z)

P1 = me.Point('P1')
P2 = me.Point('P2')
P3 = me.Point('P3')
P4 = me.Point('P4')

124 Chapter 11. Holonomic Constraints

https://en.wikipedia.org/wiki/Four-bar_linkage

Learn Multibody Dynamics

Fig. 11.2: Four bar linkage shown in blue, red, orange, and green used in the rear suspension mechanism of a mountain
bicycle.

Cartemere, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

Fig. 11.3: Pasimi, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

11.2. Four-Bar Linkage 125

https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/4.0

Learn Multibody Dynamics

SymPy Mechanics will warn you if you try to establish a closed loop among a set of points and you should not do that
because functions that use points have no way to know which vector path you desire to use. Instead you will establish
positions among points on one open leg of the chain:

P2.set_pos(P1, la*A.x)
P3.set_pos(P2, lb*B.x)
P4.set_pos(P3, lc*C.x)

P4.pos_from(P1)

lcĉx + lbb̂x + laâx (11.2)

Now, create a vector for the other path to P4 outside of the Point position relationships:

r_P1_P4 = ln*N.x

With both vector paths written, we can form the left hand side of the following equation:(
r̄P2/P1 + r̄P3/P2 + r̄P4/P3

)
− r̄P4/P1 = 0 (11.3)

Use pos_from() for the open loop leg made of points and the additional vector:

loop = P4.pos_from(P1) - r_P1_P4
loop

lcĉx + lbb̂x + laâx − lnn̂x (11.4)

This “loop” vector expression must equate to zero for our linkage to always be a closed loop. We have a planar
mechanism, so we can extract two scalar equations associated with a pair of unit vectors in the plane of the mechanism.
We can pick any two non-parallel unit vectors to express the components in, with the intuitive choice being n̂x and n̂y .

fhx = sm.trigsimp(loop.dot(N.x))
fhx

la cos (q1) + lb cos (q1 + q2) + lc cos (q1 + q2 + q3)− ln (11.5)

fhy = sm.trigsimp(loop.dot(N.y))
fhy

la sin (q1) + lb sin (q1 + q2) + lc sin (q1 + q2 + q3) (11.6)

For the loop to close, these two expressions must equal zero for all values q1, q2, q3. These are two nonlinear equations
in three time varying variables called coordinates. The solution can be found if we solve for two of the time varying
variables. For example, q2 and q3 can be solved for in terms of q1. We would then say that q2 and q3 depend on q1.
These two equations are called holonomic constraints, or configuration constraints, because they constrain the kinematic
configuration to be a loop. Holonomic constraints take the form of a real valued vector function:

f̄h(q1, . . . , qN , t) = 0 where f̄h ∈ RM (11.7)

126 Chapter 11. Holonomic Constraints

https://docs.sympy.org/latest/modules/physics/vector/api/kinematics.html#sympy.physics.vector.point.Point.pos_from

Learn Multibody Dynamics

N is number of coordinates that you have used to describe the system andM is the number of scalar constraint equations.

Warning: Holonomic constraints are defined strictly as equations that are function of theN time varying coordinates.
It is true that these equations are only valid for a limited set of ranges for the constants in the equations, i.e. the
lengths of the bars, but the range and combination constraints on the constants are not what we are considering here.
Secondly, Eq. (11.7) does not represent inequality constraints. A coordinate may be constrained to a specific range,
e.g. −π < q1 < π, but these are not holonomic constraints in the sense defined here. Inequality constraints are
generally dealt with using collision models to capture the real dynamics of forcefully limiting motion. See Collision
for more information.

The four-bar linkage constraints are functions of configuration variables: time varying angles and distances. In our case
the constraint equations are:

f̄h(q1, q2, q3) = 0 where f̄h ∈ R2 (11.8)

and N = 3 andM = 2.
In SymPy, we’ll typically form this column matrix as so:

fh = sm.Matrix([fhx, fhy])
fh

[
la cos (q1) + lb cos (q1 + q2) + lc cos (q1 + q2 + q3)− ln
la sin (q1) + lb sin (q1 + q2) + lc sin (q1 + q2 + q3)

]
(11.9)

Exercise
Watt’s Linkage is a four-bar linkage that can generate almost straight line motion of the center point of the middle coupler
link. Write the holonomic constraints for the Watt’s Linkage. The coupler link has a length of 2a, the left and right links
have length b. Make the vertical distance between the fixed points of the left and right lengths 2a and the horizontal
distance (2− 1/20)b. Use the same reference frame and angle definitions as the four-bar linkage above.

Fig. 11.4: Arglin Kampling, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

11.2. Four-Bar Linkage 127

https://en.wikipedia.org/wiki/Watt%27s_linkage
https://creativecommons.org/licenses/by-sa/4.0

Learn Multibody Dynamics

Solution

q1, q2, q3 = me.dynamicsymbols('q1, q2, q3')
a, b = sm.symbols('a, b')

N = me.ReferenceFrame('N')
A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')
C = me.ReferenceFrame('C')

A.orient_axis(N, q1, N.z)
B.orient_axis(A, q2, A.z)
C.orient_axis(B, q3, B.z)

P1 = me.Point('P1')
P2 = me.Point('P2')
P3 = me.Point('P3')
P4 = me.Point('P4')

P2.set_pos(P1, b*A.x)
P3.set_pos(P2, 2*a*B.x)
P4.set_pos(P3, b*C.x)

P4.pos_from(P1)

r_P1_P4 = (2 - sm.S(1)/20)*b*N.x - 2*a*N.y

loop = P4.pos_from(P1) - r_P1_P4

fh_watts = sm.trigsimp(sm.Matrix([loop.dot(N.x), loop.dot(N.y)]))
fh_watts

[
2a cos (q1 + q2) + b cos (q1 + q2 + q3) + b cos (q1)− 39b

20
2a sin (q1 + q2) + 2a+ b sin (q1 + q2 + q3) + b sin (q1)

]
(11.10)

11.3 Solving Holonomic Constraints

Only the simplest of holonomic constraint equations may be solved symbolically due to their nonlinear nature, so you will
in general need to solve them numerically. In Equations of Motion with Holonomic Constraints we will show how to solve
them for simulation purposes, but for now SymPy’s nsolve() can be used to numerically solve the equations. If we
choose q2 and q3 to be the dependent coordinates, we need to select numerical values for all other variables. Note that
not all link length combinations result in a valid linkage geometry. Starting with the replacements,

import math # provides pi as a float

repl = {
la: 1.0,
lb: 4.0,
lc: 3.0,
ln: 5.0,

(continues on next page)

128 Chapter 11. Holonomic Constraints

https://docs.sympy.org/latest/modules/solvers/solvers.html#sympy.solvers.solvers.nsolve

Learn Multibody Dynamics

(continued from previous page)
q1: 30.0/180.0*math.pi, # 30 degrees in radians

}
repl

{la : 1.0, lb : 4.0, lc : 3.0, ln : 5.0, q1 : 0.523598775598299} (11.11)

we can then formulate the constraint equations such that only q2 and q3 are variables:

fh.xreplace(repl)

[
4.0 cos (q2 + 0.523598775598299) + 3.0 cos (q2 + q3 + 0.523598775598299)− 4.13397459621556

4.0 sin (q2 + 0.523598775598299) + 3.0 sin (q2 + q3 + 0.523598775598299) + 0.5

]
(11.12)

Generally, there may be multiple numerical solutions for the unknowns and the underlying algorithms require a guess
to return a specific result. If we make an educated guess for the unknowns, then we can find the specific solution with
nsolve():

q2_guess = -75.0/180.0*math.pi # -75 degrees in radians
q3_guess = 100.0/180.0*math.pi # 100 degrees in radians

sol = sm.nsolve(fh.xreplace(repl), (q2, q3), (q2_guess, q3_guess))
sol/math.pi*180.0 # to degrees

[
−79.9561178980214
108.613175851763

]
(11.13)

Exercise
Find the angles of the remaining links in Watt’s Linkage if the middle linkage is rotated clockwise 5 degrees, a = 1, and
b = 4.

Solution
The angle relative to vertical of the middle link is 3π/2− (q1 + q2), which we can use to solve for q2.

repl = {
a: 1.0,
b: 4.0,
q2: 3.0*math.pi/2.0 - 5.0/180.0*math.pi - q1,

}
repl

{a : 1.0, b : 4.0, q2 : 4.62512251778497− q1} (11.14)

11.3. Solving Holonomic Constraints 129

https://en.wikipedia.org/wiki/Watt%27s_linkage

Learn Multibody Dynamics

fh_watts.xreplace(repl)

[
4.0 cos (q3 + 4.62512251778497) + 4.0 cos (q1)− 7.97431148549532

4.0 sin (q3 + 4.62512251778497) + 4.0 sin (q1) + 0.00761060381650891

]
(11.15)

q1_guess = 10.0/180.0*math.pi
q3_guess = 100.0/180.0*math.pi

sol = sm.nsolve(fh_watts.xreplace(repl), (q1, q3), (q1_guess, q3_guess))
sol/math.pi*180.0 # to degrees

[
4.53780194767253
90.3528330377729

]
(11.16)

11.4 General Holonomic Constraints

If you consider a set of v points, P1, P2, . . . , Pv that can move unconstrained in Euclidean 3D space, then one would
need 3v constraint equations to fix the points (fully constrain the motion) in that Euclidean space. For the four points in
the four-bar linkage, we would then need 3(4) = 12 constraints to lock all the points fully in place. The figure below will
be used to illustrate the general idea of constraining the configuration of the four bar linkage.
Starting with a), there are the four points in 3D Euclidean space that are free to move. Moving to b), each of the four
points can be then constrained to be in a plane with:

r̄P1/O · n̂z = 0

r̄P2/O · n̂z = 0

r̄P3/O · n̂z = 0

r̄P4/O · n̂z = 0

(11.17)

where O is a point fixed in N . This applies four constraints leaving 8 coordinates for the planar location of the points.
Now at c) we constrain the points with:

|r̄P2/P1 | = la

|r̄P3/P2 | = lb

|r̄P4/P3 | = lc

|r̄P4/P1 | = ln

(11.18)

These four constraint equations keep the points within the specified distances from each other leaving 4 coordinates free.
In d) point P1 is fixed relative to O with 2 scalar constraints:

r̄P1/O · n̂x = 0

r̄P1/O · n̂y = 0
(11.19)

Finally in e), P4 is constrained with the single scalar:

r̄P4/P1 · n̂y = 0 (11.20)

130 Chapter 11. Holonomic Constraints

Learn Multibody Dynamics

Fig. 11.5: a) Four points in 3D space, b) four points constrained to 2D space, c) points are fixed to adjacent points by a
fixed length, d) the first point is fixed atO in two dimensions, e) the fourth point is fixed in the y coordinate relative toO.

11.4. General Holonomic Constraints 131

Learn Multibody Dynamics

Notice that we did not need r̄P4/P1 · n̂x = 0, because (11.18) ensures the x coordinate of P4 is in the correct location.
These 11 constraints leave a single free coordinate to describe the orientation of A, B, and C in N . When we originally
sketched Fig. 11.1 most of these constraints were implied, i.e. we drew a planar mechanism with points P1 and P4 fixed
inN , but formally there are 12 coordinates needed to locate the four points and 11 constraints that constrain them to have
the configuration of a four-bar linkage.
A general holonomic constraint for a set of v points with Cartesian coordinates is then ([Kane1985] pg. 35):

fh(x1, y1, z1, . . . , xv, yv, zv, t) = 0 (11.21)

We include t as it is possible that the constraint is an explicit function of time (instead of only implicit, as seen above in
the four-bar linkage example).

11.5 Generalized Coordinates

If a set of v points are constrained withM holonomic constraints then only n of the Cartesian coordinates are independent
of each other. The number of independent coordinates is then defined as ([Kane1985] pg. 37):

n := 3v −M (11.22)

These n independent Cartesian coordinates can also be expressed as n functions of time q1(t), q2(t), . . . , qn(t) in such
a way that the constraint equations are always satisfied. These functions q1(t), q2(t), . . . , qn(t) are called generalized
coordinates and it is possible to find n independent coordinates that minimize the number of explicit constraint equations
needed to describe the system’s configuration at all times t. These generalized coordinates are typically determined by
inspection of the system and there is a bit of an art to choosing the best set. But you can always fall back to the formal
process of constraining each relevant point. If you describe your system with N ≤ 3v coordinates then:

n := N −M (11.23)

Take this simple pendulum with points O and P as an example:
If the pendulum length l is constant and the orientation between A and N can change, then the location of P relative to
O can be described with the Cartesian coordinates x and y. It should be clear that x and y depend on each other for this
system. The constraint relationship between those two coordinates is:

x2 + y2 = l2 (11.24)

This implies that only one coordinate is independent, i.e. n = 1. More formally, the two points give 3v = 3(2) = 6
and there are 2 constraints for the planar motion of each point, 2 constraints fixing O in N , and 1 constraint fixing the
distance from O to P , makingM = 5 and thus confirming our intuition n = 6− 5 = 1.
But there may be functions of time that relieve us from having to consider Eq. (11.24). For example, these two coordinates
can also be written as as functions of the angle q:

x = l cos q
y = l sin q (11.25)

and if we describe the configuration with only q, the constraint is implicitly satisfied. q is then a generalized coordinate
because it satisfies n = 1 and we do not have to explicitly define a constraint equation.
Now, let’s return to the four-bar linkage example in Fig. 11.1 and think about what the generalized coordinates of this
system are. We know, at least intuitively, that n = 1 for the four bar linkage. The four-bar linkage in Fig. 11.1 is
described in a way that assumes a number of constraints are fulfilled, such as Eqs. (11.17) and (11.19), so we do not have
to formally consider them.

132 Chapter 11. Holonomic Constraints

Learn Multibody Dynamics

Exercise
Are q1, q2, q3 generalized coordinates of the four-bar linkage? If not, why?

Solution
Any one of the q1, q2, q3 can be a generalized coordinate, but only one. The other two are depdendent due to the two
constraints. We started with three coordinates q1, q2, q3 describing the open chain P1 to P2 to P3 to P4. Then we have
two scalar constraint equations, leaving n = 1. Thus we can choose q1, q2, or q3 to be the indepdendent generalized
coordinate.

If we take the general approach, starting with four unconstrained points, we need 11 constraints to describe the system,
but if we select generalized coordinates to describe the system we only need 2 constraint equations (Eq. (11.8))! This
simplifies the mathematical problem description and, as we will later see, is essential for obtaining the simplest forms of
the equations of motion of a multibody system.

11.5. Generalized Coordinates 133

Learn Multibody Dynamics

11.6 Calculating Additional Kinematic Quantities

You will often need to calculate velocities and accelerations of points and reference frames of systems with holonomic
constraints. Due to the differentiation chain rule, velocities will be linear in the time derivatives of the coordinates and
accelerations will be linear in the double time derivatives of the coordinates. Our holonomic constraints dictate that there
is no relative motion between points or reference frames, implying that the relevant positions, velocities, and accelerations
will all equate to zero.
Start by setting up the points for the four-bar linkage again:

P1 = me.Point('P1')
P2 = me.Point('P2')
P3 = me.Point('P3')
P4 = me.Point('P4')
P2.set_pos(P1, la*A.x)
P3.set_pos(P2, lb*B.x)
P4.set_pos(P3, lc*C.x)

In the four-bar linkage, N v̄P4 must be zero. We can calculate the unconstrained velocity like so:

P1.set_vel(N, 0)
P4.vel(N)

lc (q̇1 + q̇2 + q̇3) ĉy + lb (q̇1 + q̇2) b̂y + laq̇1ây (11.26)

The scalar velocity constraints can be formed in a similar fashion as the configuration constraints:
N v̄P4 · n̂x = 0
N v̄P4 · n̂y = 0

(11.27)

sm.trigsimp(P4.vel(N).dot(N.x))

−la sin (q1)q̇1 − lb (q̇1 + q̇2) sin (q1 + q2)− lc (q̇1 + q̇2 + q̇3) sin (q1 + q2 + q3) (11.28)

sm.trigsimp(P4.vel(N).dot(N.y))

la cos (q1)q̇1 + lb (q̇1 + q̇2) cos (q1 + q2) + lc (q̇1 + q̇2 + q̇3) cos (q1 + q2 + q3) (11.29)

Notice that this is identical to taking the time derivative of the constraint vector function f̄h:

t = me.dynamicsymbols._t
fhd = fh.diff(t)
fhd

[
−la sin (q1)q̇1 − lb (q̇1 + q̇2) sin (q1 + q2)− lc (q̇1 + q̇2 + q̇3) sin (q1 + q2 + q3)
la cos (q1)q̇1 + lb (q̇1 + q̇2) cos (q1 + q2) + lc (q̇1 + q̇2 + q̇3) cos (q1 + q2 + q3)

]
(11.30)

134 Chapter 11. Holonomic Constraints

Learn Multibody Dynamics

We can see that the expressions are linear in q̇1, q̇2 and q̇3. If we select q̇2 and q̇3 to be dependent, we can solve the
linear system Ax̄ = b̄ for those variables using the technique shown in Solving Linear Systems. First we define a column
vector holding the dependent variables:

x = sm.Matrix([q2.diff(t), q3.diff(t)])
x

[
q̇2
q̇3

]
(11.31)

then extract the linear terms:

A = fhd.jacobian(x)
A

[
−lb sin (q1 + q2)− lc sin (q1 + q2 + q3) −lc sin (q1 + q2 + q3)
lb cos (q1 + q2) + lc cos (q1 + q2 + q3) lc cos (q1 + q2 + q3)

]
(11.32)

find the terms not linear in the dependent variables:

b = -fhd.xreplace({q2.diff(t): 0, q3.diff(t): 0})
b

[
la sin (q1)q̇1 + lb sin (q1 + q2)q̇1 + lc sin (q1 + q2 + q3)q̇1

−la cos (q1)q̇1 − lb cos (q1 + q2)q̇1 − lc cos (q1 + q2 + q3)q̇1

]
(11.33)

and finally solve for the dependent variables:

x_sol = sm.simplify(A.LUsolve(b))
x_sol

−(
la sin (q2)

tan (q3)
+la cos (q2)+lb

)
q̇1

lb
la(lb sin (q2)+lc sin (q2+q3))q̇1

lblc sin (q3)

 (11.34)

Now we can write any velocity strictly in terms of the independent speed q̇1 and all of the other coordinates.
free_dynamicsymbols() shows us what coordinates and their time derivatives present an any vector:

P4.vel(N).free_dynamicsymbols(N)

{q1, q2, q3, q̇1, q̇2, q̇3} (11.35)

Using the results in x_sol above we can write the velocity in terms of only the independent q̇1:

N v̄A = vx(q̇1, q1, q2, q3)n̂x + vy(q̇1, q1, q2, q3)n̂y + vz(q̇1, q1, q2, q3)n̂z (11.36)

Making the substitutions gives the desired result:

11.6. Calculating Additional Kinematic Quantities 135

https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.vector.Vector.free_dynamicsymbols

Learn Multibody Dynamics

qd_dep_repl = {
q2.diff(t): x_sol[0, 0],
q3.diff(t): x_sol[1, 0],

}
qd_dep_repl

q̇2 : −

(
la sin (q2)
tan (q3) + la cos (q2) + lb

)
q̇1

lb
, q̇3 :

la (lb sin (q2) + lc sin (q2 + q3)) q̇1
lblc sin (q3)

 (11.37)

P4.vel(N).xreplace(qd_dep_repl)

lc

 la (lb sin (q2) + lc sin (q2 + q3)) q̇1
lblc sin (q3)

+ q̇1 −

(
la sin (q2)
tan (q3) + la cos (q2) + lb

)
q̇1

lb

 ĉy + lb

q̇1 −
(
la sin (q2)
tan (q3) + la cos (q2) + lb

)
q̇1

lb

 b̂y + laq̇1ây

(11.38)

P4.vel(N).xreplace(qd_dep_repl).free_dynamicsymbols(N)

{q1, q2, q3, q̇1} (11.39)

The holonomic constraints will have to be solved numerically as described in Solving Holonomic Constraints, but once
done only the independent q̇1 is needed.

136 Chapter 11. Holonomic Constraints

CHAPTER

TWELVE

NONHOLONOMIC CONSTRAINTS

Note: You can download this example as a Python script: motion.py or Jupyter Notebook: motion.ipynb.

import sympy as sm
import sympy.physics.mechanics as me
me.init_vprinting(use_latex='mathjax')

class ReferenceFrame(me.ReferenceFrame):

def __init__(self, *args, **kwargs):

kwargs.pop('latexs', None)

lab = args[0].lower()
tex = r'\hat{{{}}}_{}'

super(ReferenceFrame, self).__init__(*args,
latexs=(tex.format(lab, 'x'),

tex.format(lab, 'y'),
tex.format(lab, 'z')),

**kwargs)
me.ReferenceFrame = ReferenceFrame

12.1 Learning Objectives

After completing this chapter readers will be able to:
• Formulate nonholonomic constraints to constrain motion.
• Determine if a nonholonomic constraint is essential and not simply the time derivative of a holonomic constraint.
• Formulate a motion constraint for rolling without slip.
• Define kinematical differential equations and solve them to put in first order form.
• Select different choices of generalized speeds.
• Solve for the dependent generalized speeds in terms of the independent generalized speeds.
• Calculate the degrees of freedom of a multibody system.

137

Learn Multibody Dynamics

12.2 Motion Constraints

In Holonomic Constraints, we discussed constraints on the configuration of a system. When defining configuration we
are only concerned with the locations of points and how reference frames are oriented. In this chapter, we will consider
constraints on the motion of a system. Motion concerns how points and reference frames move in time. Take parallel
parking a car as a motivating example, Fig. 12.1.

Fig. 12.1: a) two positions (or configurations) of car 2 relative to cars 1 and 3, b) simplest motion to move car 2 into an
empy spot between cars 1 and 3, c) actual motion to move car 2 into the empty spot

We know that car 2 can be in either the left or right location in a), i.e. the car’s configuration permits either location.
But the motion scenario in b) is not possible. A car cannot move from the left configuration to the right configuration by
simply sliding directly to the right (see the note below if you question this). Although, this surely would be nice if we
could. A car has wheels and only the front wheels can be steered, so the scenario in c) is a viable motion for the car to
end up in the correct final configuration. The car has to move in a specific way to get from one configuration to another.
This implies that we have some kind of constraint on the motion but not the configuration. Constraints such as these are
called nonholonomic constraints and they take the form:

f̄n(˙̄q, q̄, t) = 0

where
f̄n ∈ Rm

q̄ = [q1, . . . , qn]
T ∈ Rn

(12.1)

Them constraints involve the time derivatives of the generalized coordinates and arise from scalar equations derived from
velocities.

138 Chapter 12. Nonholonomic Constraints

Learn Multibody Dynamics

Note: We could find a very strong person to push the car sideways, overcoming the very high resisting friction force. It is
important to note that any constraint is just a model of a physical phenomena. We know that if we push hard enough and
low enough that the car’s lateral motion is not constrained. Also, if the car were on ice, then the nonholomonic constraint
may be a poor modeling decision.

12.3 Chaplygin Sleigh

Take the simple example of the Chaplygin Sleigh, sketched out in Fig. 12.2. A sleigh can slide along a flat plane, but
can only move in the direction it is pointing, much like the wheels of the car above. This system is described by three
generalized coordinates x, y, θ. For the motion to only occur along its body fixed âx direction, the component of velocity
in the body fixed ây direction must equal zero at all times.

Fig. 12.2: Configuration diagram of a Chaplygin Sleigh. The rectangle A represents a sleigh moving on a plane. Point P
represents the center of the sleigh.

Using SymPy Mechanics we can find the velocity of P and express it in the A reference frame:

x, y, theta = me.dynamicsymbols('x, y, theta')

N = me.ReferenceFrame('N')
A = me.ReferenceFrame('A')

A.orient_axis(N, theta, N.z)

O = me.Point('O')
P = me.Point('P')

P.set_pos(O, x*N.x + y*N.y)

O.set_vel(N, 0)

P.vel(N).express(A)

12.3. Chaplygin Sleigh 139

https://en.wikipedia.org/wiki/Chaplygin_sleigh

Learn Multibody Dynamics

(sin (θ)ẏ + cos (θ)ẋ)âx + (− sin (θ)ẋ+ cos (θ)ẏ)ây (12.2)

The single scalar nonholonomic constraint then takes this form:
N v̄P · ây = 0 (12.3)

because there can be no velocity component in the ây direction. With SymPy, this is:

fn = P.vel(N).dot(A.y)
fn

− sin (θ)ẋ+ cos (θ)ẏ (12.4)

How do we know that this is, in fact, a nonholonomic constraint and not simply the time derivative of a holonomic
constraint?
Recall one of the four-bar linkage holonomic constraints arising from Eq. (11.3) and time differentiate it:

t = me.dynamicsymbols._t

q1, q2, q3 = me.dynamicsymbols('q1, q2, q3')
la, lb, lc, ln = sm.symbols('l_a, l_b, l_c, l_n')

fhx = la*sm.cos(q1) + lb*sm.cos(q1 + q2) + lc*sm.cos(q1 + q2 + q3) - ln
sm.trigsimp(fhx.diff(t))

−la sin (q1)q̇1 − lb (q̇1 + q̇2) sin (q1 + q2)− lc (q̇1 + q̇2 + q̇3) sin (q1 + q2 + q3) (12.5)

This looks like a nonholonomic constraint, i.e. it has time derivatives of the coordinates, but we know that if we integrate
this equation with respect to time we can retrieve the original holonomic constraint, so it really isn’t a nonholonomic
constraint even though it looks like one.
So if we can integrate fn with respect to time and we arrive at a function of only the generalized coordinates and time,
then we do not have a nonholonomic constraint, but a holonomic constraint in disguise. Unfortunately, it is not generally
possible to integrate fn so we must check the integrability of fn indirectly.
If fn of the sleigh was the time derivative of a holonomic constraint fh then it must be able to be expressed in this form:

fn =
dfh
dt

=
∂fh
∂x

dx

dt
+
∂fh
∂y

dy

dt
+
∂fh
∂θ

dθ

dt
+
∂fh
∂t

(12.6)

and a condition of integrability is that the mixed partial derivatives must commute. By inspection of fn we see that we
can extract the partial derivatives by collecting the coefficients. SymPy’s coeff() can extract the linear coefficients for
us:

dfdx = fn.coeff(x.diff(t))
dfdy = fn.coeff(y.diff(t))
dfdth = fn.coeff(theta.diff(t))

dfdx, dfdy, dfdth

(− sin (θ), cos (θ), 0) (12.7)

Each pair of mixed partials can be calculated. For example ∂2fh
∂y∂x and

∂2fh
∂x∂y :

140 Chapter 12. Nonholonomic Constraints

https://en.wikipedia.org/wiki/Symmetry_of_second_derivatives
https://docs.sympy.org/latest/modules/core.html#sympy.core.expr.Expr.coeff

Learn Multibody Dynamics

dfdx.diff(y), dfdy.diff(x)

(0, 0) (12.8)

and the other two pairs:

dfdx.diff(theta), dfdth.diff(x)

(− cos (θ), 0) (12.9)

dfdy.diff(theta), dfdth.diff(y)

(− sin (θ), 0) (12.10)

We see that to for the last two pairs, the mixed partials do not commute. This proves that fn is not integrable and is
thus an essential nonholonomic constraint that is not a holonomic constraint in disguise.

Exercise
Check whether the mixed partials of the time derivative of the four-bar linkage constraints commute.

Solution

fnx = fhx.diff(t)
dfdq1 = fnx.diff(q1)
dfdq2 = fnx.diff(q2)
dfdq3 = fnx.diff(q3)

All of the mixed partials are the same:

dfdq1.diff(q2) - dfdq2.diff(q1)

0 (12.11)

dfdq2.diff(q3) - dfdq3.diff(q2)

0 (12.12)

12.3. Chaplygin Sleigh 141

Learn Multibody Dynamics

dfdq3.diff(q1) - dfdq1.diff(q3)

0 (12.13)

All of the mixed partials are the same so this is a holonomic constraint in disguise.

12.4 Rolling Without Slip

It is quite common to make the modeling assumption that a wheel rolls without slip. A wheel best provides its beneficial
properties of rolling and propulsion by ensuring that the friction between the wheel and the surface it rolls on is sufficiently
high. This avoids relative motion between a point fixed on the wheel and a point fixed on the surface located at the wheel-
surface contact location at any given time. This nature can be modeled by a motion constraint. The key to developing the
constraint to ensure there is no relative slip velocity is to identify the correct two points, calculate the velocity of those
points, and specify that the relative velocity is zero.

Fig. 12.3: A 2D disc B rolling on a motionless plane N .

For example, when a 2D disc B rolls without slip over a motionless plane N (Fig. 12.3), the velocity of a point C fixed
in B at the contact point with the plane must be zero to ensure no slip when observed from the plane’s reference frame.

142 Chapter 12. Nonholonomic Constraints

Learn Multibody Dynamics

We can state this mathematically as:

N v̄C = 0 (12.14)

One must be careful about calculating this velocity and recognizing that there are numerous points of possible interest at
the same wheel-plane contact location. You may consider these points, for example:

• A pointBC that moves in the planeN which is always located at the wheel-plane contact location. The coordinate
q1 tracks this point in the figure.

• A point GC that is fixed in the wheel which follows a cycloid curve as it rolls along.
• A point G that is fixed in the plane which is located at the wheel-plane contact point at any given instance of time.
• A point C that is fixed in the wheel which is located at the wheel-plane contact point at any given instance of time.

A motion constraint that ensures rolling without slip, can only be formed by considering the last two points. The vector
constraint equation is:

N v̄C − N v̄G = 0 (12.15)

Point G is fixed in N so it has no velocity in N :

N v̄G = 0 (12.16)

PointC is fixed inB. To determine its velocity, takeBo to be the wheel center which is also fixed inB. Since both points
are fixed in B we can apply the two point velocity theorem.

N v̄C = N v̄Bo + N ω̄B × r̄C/Bo (12.17)

We can then use two generalized coordinates to describe the position q1 (fromO fixed inN) and rotation q2 of the wheel.
The velocity of the wheel center is then:

N v̄Bo = q̇1n̂x (12.18)

The cross product terms are found with the radius of the wheel with r and the angular velocity to give the velocity of C:
N v̄C =q̇1n̂x + q̇2n̂z ×−rn̂y
N v̄C =q̇1n̂x + q̇2rn̂x

(12.19)

Applying the motion constraint and knowing that N v̄G = 0 gives us this scalar constraint equation directly from (12.19):

q̇1 + q̇2r = 0 (12.20)

This is a scalar constraint equation that ensures rolling without slip and involves the time derivatives of the coordinates. It
is integrable and thus actually a holonomic constraint, i.e. q1 + q2r = 0. General rolling without slip in three dimensions
will be nonholonomic. Take care to calculate the relative velocities of the two points fixed in each of the bodies in rolling
contact that are located at the contact point at that instance of time.

12.5 Kinematical Differential Equations

In Eq. (12.1) we show the form of the nonholonomic constraints in terms of ˙̄q. Newton’s and Euler’s Second Laws of
motion will require calculation of acceleration and angular acceleration respectively. These laws of motion are second
order differential equations because it involves second time derivatives of distances and angles. Any second order dif-
ferential equation can be equivalently represented by two first order differential equations by introducing a new variable
for any first derivative terms. We are working towards writing the equations of motion of a multibody system, which will

12.5. Kinematical Differential Equations 143

https://en.wikipedia.org/wiki/Cycloid

Learn Multibody Dynamics

be differential equations that are most useful for simulation when in a first order form. To do this, we now introduce the
variables ū = [u1, . . . , un]

T and define them as linear functions of the time derivatives of the generalized coordinates
q̇1, . . . , q̇n. These variables are called generalized speeds. They take the form:

ū := Yk(q̄, t) ˙̄q + z̄k(q̄, t) (12.21)

ūmust be chosen such that Yk is invertible. If it is, then we solve for ˙̄q we can write these first order differential equations
as such:

˙̄q = Y−1
k (ū− z̄k) (12.22)

Eq. (12.22) are called the kinematical differential equations.
The most common, and always valid, choice of generalized speeds is:

ū = I ˙̄q (12.23)

where I is the identity matrix. This results in ui = q̇i for i = 1, . . . , n.
Now that we have introduced generalized speeds, the nonholonomic constraints can then be written as:

f̄n(ū, q̄, t) = 0

where
f̄n ∈ Rm

ū = [u1, . . . , un]
T ∈ Rn

q̄ = [q1, . . . , qn]
T ∈ Rn

(12.24)

12.6 Choosing Generalized Speeds

There are many possible choices for generalized speed and you are free to select them as you please, as long as they fit
the form of equation (12.21) and Yk is invertible. Some selections of generalized speeds can reduce the complexity of
important velocity expressions and if selected carefully may reduce the complexity of the equations of motion we will
derive in a later chapters (see [Mitiguy1996] for examples). To see some examples of selecting generalized speeds, take
for example the angular velocity of a reference frame which is oriented with a z-x-y body fixed orientation:

q1, q2, q3 = me.dynamicsymbols('q1, q2, q3')

A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')

B.orient_body_fixed(A, (q1, q2, q3), 'ZXY')

A_w_B = B.ang_vel_in(A).simplify()
A_w_B

(− sin (q3) cos (q2)q̇1 + cos (q3)q̇2)b̂x + (sin (q2)q̇1 + q̇3)b̂y + (sin (q3)q̇2 + cos (q2) cos (q3)q̇1)b̂z (12.25)

144 Chapter 12. Nonholonomic Constraints

Learn Multibody Dynamics

12.6.1 Choice 1

If we choose the simplest definition for the u’s, i.e. u1 = q̇1, u2 = q̇2, and u3 = q̇3, the angular velocity takes this form:

u1, u2, u3 = me.dynamicsymbols('u1, u2, u3')

t = me.dynamicsymbols._t
qdot = sm.Matrix([q1.diff(t), q2.diff(t), q3.diff(t)])
u = sm.Matrix([u1, u2, u3])

A_w_B = A_w_B.xreplace(dict(zip(qdot, u)))
A_w_B

(−u1 sin (q3) cos (q2) + u2 cos (q3))b̂x + (u1 sin (q2) + u3)b̂y + (u1 cos (q2) cos (q3) + u2 sin (q3))b̂z (12.26)

Yk_plus_zk = qdot
Yk_plus_zk

q̇1q̇2
q̇3

 (12.27)

Recall from Solving Linear Systems that the Jacobian is a simple way to extract the coefficients of linear terms into a
coefficient matrix for a system of linear equations. In this case, we see that this results in the identity matrix.

Yk = Yk_plus_zk.jacobian(qdot)
Yk

1 0 0
0 1 0
0 0 1

 (12.28)

Now find z̄k by setting the time derivatives of the generalized coordinates to zero:

qd_zero_repl = dict(zip(qdot, sm.zeros(3, 1)))
qd_zero_repl

{q̇1 : 0, q̇2 : 0, q̇3 : 0} (12.29)

zk = Yk_plus_zk.xreplace(qd_zero_repl)
zk

00
0

 (12.30)

The linear equation can be solved for the q̇’s, (Eq. (12.22)):

12.6. Choosing Generalized Speeds 145

Learn Multibody Dynamics

sm.Eq(qdot, Yk.LUsolve(u - zk))

q̇1q̇2
q̇3

 =

u1u2
u3

 (12.31)

12.6.2 Choice 2

Another valid choice is to set the u’s equal to each measure number of the angular velocity expressed in B:

u1 = Aω̄B · b̂x
u2 = Aω̄B · b̂y
u3 = Aω̄B · b̂z

(12.32)

so that:

Aω̄B = u1b̂x + u2b̂y + u3b̂z (12.33)

A_w_B = B.ang_vel_in(A).simplify()
A_w_B

(− sin (q3) cos (q2)q̇1 + cos (q3)q̇2)b̂x + (sin (q2)q̇1 + q̇3)b̂y + (sin (q3)q̇2 + cos (q2) cos (q3)q̇1)b̂z (12.34)

u1_expr = A_w_B.dot(B.x)
u2_expr = A_w_B.dot(B.y)
u3_expr = A_w_B.dot(B.z)

Yk_plus_zk = sm.Matrix([u1_expr, u2_expr, u3_expr])
Yk_plus_zk

− sin (q3) cos (q2)q̇1 + cos (q3)q̇2
sin (q2)q̇1 + q̇3

sin (q3)q̇2 + cos (q2) cos (q3)q̇1

 (12.35)

Yk = Yk_plus_zk.jacobian(qdot)
Yk

− sin (q3) cos (q2) cos (q3) 0
sin (q2) 0 1

cos (q2) cos (q3) sin (q3) 0

 (12.36)

146 Chapter 12. Nonholonomic Constraints

Learn Multibody Dynamics

zk = Yk_plus_zk.xreplace(qd_zero_repl)
zk

00
0

 (12.37)

Now we form:

sm.Eq(qdot, sm.trigsimp(Yk.LUsolve(u - zk)))

q̇1q̇2
q̇3

 =

 −u1 sin (q3)−u3 cos (q3)
cos (q2)

u1 cos (2q3)+u1+u3 sin (2q3)
2 cos (q3)

u1 sin (q3) tan (q2) + u2 − u3 cos (q3) tan (q2)

 (12.38)

Note: Notice how the kinematical differential equations are not valid when q2 or q3 are even multiples of π/2. If your
system must orient through these values, you’ll need to select a different body fixed rotation or an orientation method that
isn’t suseptible to these issues.

12.6.3 Choice 3

Another valid choice is to set the u’s equal to each measure number of the angular velocity expressed in A:

u1 = Aω̄B · âx
u2 = Aω̄B · ây
u3 = Aω̄B · âz

(12.39)

so that:

Aω̄B = u1âx + u2ây + u3âz (12.40)

A_w_B = B.ang_vel_in(A).express(A).simplify()
A_w_B

(− sin (q1) cos (q2)q̇3 + cos (q1)q̇2)âx + (sin (q1)q̇2 + cos (q1) cos (q2)q̇3)ây + (sin (q2)q̇3 + q̇1)âz (12.41)

u1_expr = A_w_B.dot(A.x)
u2_expr = A_w_B.dot(A.y)
u3_expr = A_w_B.dot(A.z)

Yk_plus_zk = sm.Matrix([u1_expr, u2_expr, u3_expr])
Yk_plus_zk

12.6. Choosing Generalized Speeds 147

Learn Multibody Dynamics

− sin (q1) cos (q2)q̇3 + cos (q1)q̇2
sin (q1)q̇2 + cos (q1) cos (q2)q̇3

sin (q2)q̇3 + q̇1

 (12.42)

Yk = Yk_plus_zk.jacobian(qdot)
Yk

0 cos (q1) − sin (q1) cos (q2)
0 sin (q1) cos (q1) cos (q2)
1 0 sin (q2)

 (12.43)

zk = Yk_plus_zk.xreplace(qd_zero_repl)
zk

00
0

 (12.44)

sm.Eq(qdot, sm.trigsimp(Yk.LUsolve(u - zk)))

q̇1q̇2
q̇3

 =

(u1 sin (q1)− u2 cos (q1)) tan (q2) + u3
u1 cos (q1) + u2 sin (q1)
−u1 sin (q1)−u2 cos (q1)

cos (q2)

 (12.45)

12.7 Snakeboard

A snakeboard is a variation on a skateboard that can be propelled via nonholonomic locomotion [Ostrowski1994]. Similar
to the Chaplygin Sleigh, the wheels can generally only travel in the direction they are pointed. This classic video from
1993 shows how to propel the board:
Fig. 12.4 shows what a real Snakeboard looks like and Fig. 12.5 shows a configuration diagram.
Start by defining the time varying variables and constants:

q1, q2, q3, q4, q5 = me.dynamicsymbols('q1, q2, q3, q4, q5')
l = sm.symbols('l')

The reference frames are all simple rotations about the axis normal to the plane:

N = me.ReferenceFrame('N')
A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')
C = me.ReferenceFrame('C')

(continues on next page)

148 Chapter 12. Nonholonomic Constraints

https://en.wikipedia.org/wiki/Snakeboard

Learn Multibody Dynamics

Fig. 12.4: Example of a snakeboard that shows the two footpads each with attached truck and pair of wheels that are
connected by the coupler.

Николайков Вячеслав, CC BY-SA 3.0, via Wikimedia Commons

Fig. 12.5: Configuration diagram of a planar Snakeboard model.

12.7. Snakeboard 149

https://creativecommons.org/licenses/by-sa/3.0

Learn Multibody Dynamics

(continued from previous page)

A.orient_axis(N, q3, N.z)
B.orient_axis(A, q4, A.z)
C.orient_axis(A, q5, A.z)

The angular velocities of each reference frame are then:

A.ang_vel_in(N)

q̇3n̂z (12.46)

B.ang_vel_in(N)

q̇4âz + q̇3n̂z (12.47)

C.ang_vel_in(N)

q̇5âz + q̇3n̂z (12.48)

Establish the position vectors among the points:

O = me.Point('O')
Ao = me.Point('A_o')
Bo = me.Point('B_o')
Co = me.Point('C_o')

Ao.set_pos(O, q1*N.x + q2*N.y)
Bo.set_pos(Ao, l/2*A.x)
Co.set_pos(Ao, -l/2*A.x)

The velocity of Ao in N is a simple time derivative:

O.set_vel(N, 0)
Ao.vel(N)

q̇1n̂x + q̇2n̂y (12.49)

The two point theorem is handy for computing the other two velocities:

Bo.v2pt_theory(Ao, N, A)

q̇1n̂x + q̇2n̂y +
lq̇3
2
ây (12.50)

150 Chapter 12. Nonholonomic Constraints

Learn Multibody Dynamics

Co.v2pt_theory(Ao, N, A)

q̇1n̂x + q̇2n̂y −
lq̇3
2
ây (12.51)

The unit vectors ofB and C are aligned with the wheels of the Snakeboard. This lets us impose that there is no velocity
in the direction normal to the wheel’s rolling direction by taking dot products with the respectively reference frames’ y
direction unit vector to form the two nonholonomic constraints:

Av̄Bo · b̂y = 0
Av̄Co · ĉy = 0

(12.52)

fn = sm.Matrix([Bo.vel(N).dot(B.y),
Co.vel(N).dot(C.y)])

fn = sm.trigsimp(fn)
fn

[
l cos (q4)q̇3

2 − sin (q3 + q4)q̇1 + cos (q3 + q4)q̇2
− l cos (q5)q̇3

2 − sin (q3 + q5)q̇1 + cos (q3 + q5)q̇2

]
(12.53)

Now we introduce some generalized speeds. By inspection of the above constraint equations, we can see that defining
a generalized speed equal to lq̇3

2 can simplify the equations a bit. So define these generalized speeds:

ui = q̇i for i = 1, 2, 4, 5

u3 =
lq̇3
2

(12.54)

Now replace all of the time derivatives of the generalized coordinates with the generalized speeds. We use subs() here
because the replacement isn’t an exact replacement (in the sense of xreplace()).

u1, u2, u3, u4, u5 = me.dynamicsymbols('u1, u2, u3, u4, u5')

u_repl = {
q1.diff(): u1,
q2.diff(): u2,
l*q3.diff()/2: u3,
q4.diff(): u4,
q5.diff(): u5

}

fn = fn.subs(u_repl)
fn

[
−u1 sin (q3 + q4) + u2 cos (q3 + q4) + u3 cos (q4)
−u1 sin (q3 + q5) + u2 cos (q3 + q5)− u3 cos (q5)

]
(12.55)

These nonholonomic constraints take this form:

f̄n(u1, u2, u3, q3, q4, q5) = 0 where f̄n ∈ R2 (12.56)

We now have two equations with three unknown generalized speeds. Note that all of the generalized coordinates are
not present in these constraints which is common. We can solve for two of the generalized speeds in terms of the third.

12.7. Snakeboard 151

https://docs.sympy.org/latest/modules/core.html#sympy.core.basic.Basic.subs
https://docs.sympy.org/latest/modules/core.html#sympy.core.basic.Basic.xreplace

Learn Multibody Dynamics

So we select two as dependent generalized speeds and one as an independent generalized speed. Because nonholonomic
constraints are derived from measure numbers of velocity vectors, the nonholonomic constraints are always linear in the
generalized speeds. If we introduce ūs as a vector of independent generalized speeds and ūr as a vector of dependent
generalized speeds, the nonholonomic constraints can be written as:

f̄n(ūs, ūr, q̄, t) = Ar(q̄, t)ūr + As(q̄, t)ūs + b̄rs(q̄, t) = 0 (12.57)

or
ūr = A−1

r

(
−Asūs − b̄rs

)
ūr = Anūs + b̄n

(12.58)

For the Snakeboard let’s choose ūs = [u3, u4, u5]
T as the independent generalized speeds and ūr = [u1, u2]

T as the
dependent generalized speeds.

us = sm.Matrix([u3, u4, u5])
ur = sm.Matrix([u1, u2])

Ar are the linear coefficients of ūr so:

Ar = fn.jacobian(ur)
Ar

[
− sin (q3 + q4) cos (q3 + q4)
− sin (q3 + q5) cos (q3 + q5)

]
(12.59)

As are the linear coefficients of ūs so:

As = fn.jacobian(us)
As

[
cos (q4) 0 0
− cos (q5) 0 0

]
(12.60)

b̄rs remains when ū = 0:

brs = fn.xreplace(dict(zip([u1, u2, u3, u4, u5], [0, 0, 0, 0, 0])))
brs

[
0
0

]
(12.61)

An and b̄n are formed by solving the linear system:

An = Ar.LUsolve(-As)
An = sm.simplify(An)
An

 cos (q3−q4+q5)
2 +

cos (q3+q4−q5)
2 +cos (q3+q4+q5)

sin (q4−q5) 0 0
sin (q3−q4+q5)

2 +
sin (q3+q4−q5)

2 +sin (q3+q4+q5)
sin (q4−q5) 0 0

 (12.62)

152 Chapter 12. Nonholonomic Constraints

Learn Multibody Dynamics

bn = Ar.LUsolve(-brs)
bn

[
0
0

]
(12.63)

We now have the m = 2 dependent generalized speeds ūr = [u1, u2]
T written as functions of the n=1 independent

generalized speeds ūs = [u3]:

sm.Eq(ur, An*us + bn)

[
u1
u2

]
=

(

cos (q3−q4+q5)
2 +

cos (q3+q4−q5)
2 +cos (q3+q4+q5)

)
u3

sin (q4−q5)(
sin (q3−q4+q5)

2 +
sin (q3+q4−q5)

2 +sin (q3+q4+q5)
)
u3

sin (q4−q5)

 (12.64)

12.8 Degrees of Freedom

For simple nonholonomic systems observed in a reference frame A, such as the Chaplygin Sleigh or the Snakeboard, the
degrees of freedom in A are equal to the number of independent generalized speeds. The number of degrees of freedom
p is defined as:

p := n−m (12.65)

where n is the number of generalized coordinates andm are the number of nonholonomic constraints (and thus dependent
generalized speeds). If there are no nonholonomic constraints, the system is a holonomic system in A and p = n making
the number of degrees of freedom equal to the number of generalized coordinates.

Exercise
What are the number of degrees of freedom for the Chaplygin Sleigh, Snakeboard, and Four-bar linkage?

Solution
The Chapylgin Sleigh has n = 3 generalized coordinates x, y, θ and m = 1 nonholonomic constraints. The degrees of
freedom are then p = 3− 1 = 2.
The Snakeboard has n = 5 generalized coordinates and m = 2 nonholonomic constraints. The degrees of freedom are
then p = 5− 2 = 3.
We described the four-bar linkage withN = 3 coordinates and there wereM = 2 holonomic constraints leaving us with
n = N −M = 3− 2 = 1 generalized coordinates. There are no nonholonomic constraints som = 0. This means that
there p = n−m = 1− 0 = 1 degrees of freedom.

It is not always easy to visualize the degrees of freedom of a nonholonomic system when thinking of its motion, but
for holonomic systems thought experiments where you vary one or two generalized coordinates at a time can help you
visualize the motion.
If you have a holonomic system (no nonholonomic constraints) the degrees of freedom are equal to the number of gener-
alized coordinates. Nonholonomic systems (those with non-integrable motion constraints) have fewer degrees of freedom
than the number of generalized coordinates.

12.8. Degrees of Freedom 153

Learn Multibody Dynamics

154 Chapter 12. Nonholonomic Constraints

CHAPTER

THIRTEEN

MASS DISTRIBUTION

Note: You can download this example as a Python script: mass.py or Jupyter Notebook: mass.ipynb.

13.1 Learning Objectives

After completing this chapter readers will be able to:
• calculate the mass, mass center, and inertia of a set of particles
• use inertia vectors to find inertia scalars of a set of particles
• formulate an inertia matrix for a set of particles
• use a dyadic to manipulate 2nd order tensors in multiple reference frames
• calculate the inertia dyadic of a set of particles
• apply the parallel axis theorem
• calculate the principal moments of inertia and the principal axes
• calculate angular momentum of a rigid body

import sympy as sm
import sympy.physics.mechanics as me
me.init_vprinting(use_latex='mathjax')

class ReferenceFrame(me.ReferenceFrame):

def __init__(self, *args, **kwargs):

kwargs.pop('latexs', None)

lab = args[0].lower()
tex = r'\hat{{{}}}_{}'

super(ReferenceFrame, self).__init__(*args,
latexs=(tex.format(lab, 'x'),

tex.format(lab, 'y'),
tex.format(lab, 'z')),

**kwargs)
me.ReferenceFrame = ReferenceFrame

155

Learn Multibody Dynamics

In the prior chapters, we have developed the tools to formulate the kinematics of points and reference frames. The
kinematics are the first of three essential parts needed to form the equations of motion of a multibody system; the other
two being the mass distribution of and the forces acting on the system.
When a point is associated with a particle of mass m or a reference frame is associated with a rigid body that has some
mass distribution, Newton’s and Euler’s second laws of motion show that the time rate of change of the linear and angular
momenta must be equal to the forces and torques acting on the particle or rigid body, respectively. The momentum of a
particle is determined by its mass and velocity and the angular momentum of a rigid body is determined by the distribution
of mass and its angular velocity. In this chapter, we will introduce mass and its distribution.

13.2 Particles and Rigid Bodies

Wewill introduce and use the concepts of particles and rigid bodies in this chapter. Both are abstractions of real translating
and rotating objects. Particles are points that have a location in Euclidean space which have a volumetrically infinitesimal
mass. Rigid bodies are reference frames that have orientation which have an associated continuous distribution of mass.
The distribution of mass can be thought of as an infinite collection of points distributed in a finite volumetric boundary.
All of the points distributed in the volume are fixed to one another and translate together.
For example, an airplane can be modeled as a rigid body when one is concerned with both its translation and orientation.
This could be useful when investigating its minimum turn radii and banking angle. But it could also be modeled as a
particle when one is only concerned with its translation; for example when you observing the motion of the airplane from
a location outside the Earth’s atmosphere.

13.3 Mass

Given a set of ν particles with massesm1, . . . ,mν the total mass, or zeroth moment of mass, of the set is defined as:

m :=

ν∑
i=1

mi (13.1)

Exercise
What is the mass of an object made up of two particles of massm and a rigid body with massm/2?

Solution

m = sm.symbols('m')

m_total = m + m + m/2
m_total

5m

2
(13.2)

For a rigid body consisting of a solid with a density ρ defined at each point within its volumetric V boundary, the total
mass becomes an integral of the general form:

m :=

∫
solid

ρdV (13.3)

156 Chapter 13. Mass Distribution

https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
https://en.wikipedia.org/wiki/Euler%27s_laws_of_motion

Learn Multibody Dynamics

Exercise
What is the mass of a cone with uniform density ρ, radius R, and height h?

Solution
Using cylindrical coordinates to write dV = rdzdθdr, integrate() function can solve the triple integral:∫ h

0

∫ 2π

0

∫ R
h z

0

ρrdzdθdr (13.4)

p, R, h = sm.symbols('rho, R, h') # constants
r, z, theta = sm.symbols('r, z, theta') # integration variables

sm.integrate(p*r, (r, 0, R/h*z), (theta, 0, 2*sm.pi), (z, 0, h))

πR2hρ

3
(13.5)

13.4 Mass Center

If each particle in a set of S particles is located at positions r̄Pi/O, . . . , r̄Pν/O the first moment of mass is defined as:
ν∑
i=1

mir̄
Pi/O. (13.6)

There is then a point So in which the first mass moment is equal to zero; fulfilling the following equation:
ν∑
i=1

mir̄
Pi/So = 0. (13.7)

This point So is referred to as the mass center (or center of mass) of the set of particles. The mass center’s position can
be found by dividing the first moment of mass by the zeroth moment of mass:

r̄So/O =

∑ν
i=1mir̄

Pi/O∑ν
i=1mi

. (13.8)

For a solid body, this takes the integral form:

r̄So/O =

∫
solid ρr̄dV∫
solid ρdV

(13.9)

The particle form (Eq. (13.8)) can be calculated using vectors and scalars in SymPy Mechanics. Here is an example of
three particles each at an arbitrary location relative to O:

13.4. Mass Center 157

https://docs.sympy.org/latest/modules/integrals/integrals.html#sympy.integrals.integrals.integrate

Learn Multibody Dynamics

m1, m2, m3 = sm.symbols('m1, m2, m3')
x1, x2, x3 = me.dynamicsymbols('x1, x2, x3')
y1, y2, y3 = me.dynamicsymbols('y1, y2, y3')
z1, z2, z3 = me.dynamicsymbols('z1, z2, z3')

A = me.ReferenceFrame('A')

zeroth_moment = (m1 + m2 + m3)

first_moment = (m1*(x1*A.x + y1*A.y + z1*A.z) +
m2*(x2*A.x + y2*A.y + z2*A.z) +
m3*(x3*A.x + y3*A.y + z3*A.z))

first_moment

(m1x1 +m2x2 +m3x3)âx + (m1y1 +m2y2 +m3y3)ây + (m1z1 +m2z2 +m3z3)âz (13.10)

r_O_So = first_moment/zeroth_moment
r_O_So

m1x1 +m2x2 +m3x3
m1 +m2 +m3

âx +
m1y1 +m2y2 +m3y3

m1 +m2 +m3
ây +

m1z1 +m2z2 +m3z3
m1 +m2 +m3

âz (13.11)

Exercise
Ifm2 = 2m1 andm3 = 3m1 in the above example, find the mass center.

Solution

r_O_So.xreplace({m2: 2*m1, m3: 3*m1}).simplify()

(
x1
6

+
x2
3

+
x3
2
)âx + (

y1
6

+
y2
3

+
y3
2
)ây + (

z1
6

+
z2
3

+
z3
2
)âz (13.12)

13.5 Distribution of Mass

The inertia, or second moment of mass, describes the distribution of mass relative to a point about an axis. Inertia charac-
terizes the resistance to angular acceleration in the same way that mass characterizes the resistance to linear acceleration.
For a set of particles P1, . . . , Pν with positions r̄P1/O, . . . , r̄Pν/O all relative to a point O, the inertia vector about the
unit vector n̂a is defined as ([Kane1985], pg. 61):

Īa :=

ν∑
i=1

mir̄
Pi/O ×

(
n̂a × r̄Pi/O

)
(13.13)

158 Chapter 13. Mass Distribution

Learn Multibody Dynamics

Similarly, for an infinite number of points at locations parametrized by τ that make up a rigid body with density ρ(τ) the
integral form is used ([Kane1985], pg. 62):

Īa :=

∫
solid

ρ(τ)
[
r̄P (τ)/O ×

(
n̂a × r̄P (τ)/O

)]
dτ (13.14)

This vector describes the sum of each mass’s contribution to the mass distribution about a line that is parallel to n̂a and
passes through O. Figure Fig. 13.1 shows a visual representation of this vector for a single particle P with massm.

Fig. 13.1: Inertia vector for a single particle P of massm and its relationship to n̂a.

For this single particle, the magnitude of Īa is: ∣∣Īa∣∣ = m
∣∣∣r̄P/O

∣∣∣2 | sin θ| (13.15)

where θ is angle between r̄P/O and n̂a. We see that Īa is always perpendicular to r̄P/O and scales withm, |r̄P/O|2, and
sin θ. If n̂a happens to be parallel to r̄P/O then the magnitude of Īa is zero. If n̂a is perpendicular to r̄P/O then the
magnitude is: ∣∣Īa∣∣ = m

∣∣∣r̄P/O
∣∣∣2 (13.16)

The inertia vector fully describes the distribution of the particles with respect to O about n̂a.
A component of Īa in the n̂b direction is called an inertia scalar and is defined as ([Kane1985], pg. 62):

Iab := Īa · n̂b (13.17)

13.5. Distribution of Mass 159

Learn Multibody Dynamics

The inertia scalar can be rewritten using Eq. (13.13) as:

Iab =

ν∑
i=1

mi

(
r̄Pi/O × n̂a

)
·
(
r̄Pi/O × n̂b

)
. (13.18)

This form implies that:

Iab = Iba (13.19)

If n̂a = n̂b then this inertia scalar is called a moment of inertia and if n̂a ̸= n̂b it is called a product of inertia. Moments
of inertia describe the mass distribution about a single axis whereas products of inertia describe the mass distribution
relative to two axes.
When n̂a = n̂b Eq. (13.18) reduces to the moment of inertia:

Iaa =

ν∑
i=1

mi

(
r̄Pi/O × n̂a

)
·
(
r̄Pi/O × n̂a

)
(13.20)

It is common to define the radius of gyration kaa, which is the radius of a ring that has the same moment of inertia as the
set of particles or rigid body. The radius of gyration about a line through O parallel to n̂a is defined as:

kaa :=

√
Iaa
m

(13.21)

Exercise
Three masses of m, 2m, and 3m slide on a ring of radius r. Mass 3m always lies π/6 anitclockwise from m and mass
2m always lies π/7 clockwise fromm. Find the acute angle from the line from the ring center to m to a line tangent to
the ring at point O which minimizes the total radius of gyration of all three masses about the line tangent to the ring.

160 Chapter 13. Mass Distribution

Learn Multibody Dynamics

Solution
Define the necessary variables, including θ to locate massm.

m, r, theta = sm.symbols('m, r, theta')
A = me.ReferenceFrame('A')

Create position vectors to each of the masses:

r_O_m = (r + r*sm.sin(theta))*A.x + r*sm.cos(theta)*A.y
r_O_2m = (r + r*sm.sin(theta + sm.pi/7))*A.x + r*sm.cos(theta + sm.pi/7)*A.y
r_O_3m = (r + r*sm.sin(theta - sm.pi/6))*A.x + r*sm.cos(theta - sm.pi/6)*A.y

Create the inertia scalar for a moment of inertia about the point O and ây .

Iyy = (m*me.dot(r_O_m.cross(A.y), r_O_m.cross(A.y)) +
2*m*me.dot(r_O_2m.cross(A.y), r_O_2m.cross(A.y)) +
3*m*me.dot(r_O_3m.cross(A.y), r_O_3m.cross(A.y)))

Iyy

m (r sin (θ) + r)
2
+ 2m

(
r sin

(
θ +

π

7

)
+ r
)2

+ 3m
(
−r cos

(
θ +

π

3

)
+ r
)2

(13.22)

Recognizing that the radius of gyration is minimized when themoment of inertia is minimized, we can take the derivative
of the moment of inertia with respect to θ and set that equal to zero.

dIyydtheta = sm.simplify(Iyy.diff(theta))
dIyydtheta

2mr2
(
(sin (θ) + 1) cos (θ) + 2

(
sin
(
θ +

π

7

)
+ 1
)
cos
(
θ +

π

7

)
− 3

(
cos
(
θ +

π

3

)
− 1
)
sin
(
θ +

π

3

))
(13.23)

We can divide through bymr2 and solve numerically for θ since it is the only variable present in the expression.

theta_sol = sm.nsolve((dIyydtheta/m/r**2).evalf(), theta, 0)
theta_sol

−1.49935061382135 (13.24)

In degrees that is:

import math

theta_sol*180/math.pi

−85.9064621823125 (13.25)

The plot() function can make quick plots of single variate functions. Here we see that rotating the set of masses
around the ring will maximize and minimize the radius of gyration and that our solution is a minima. m = r = 1 was
selected so we could plot only as a function of θ.

13.5. Distribution of Mass 161

https://docs.sympy.org/latest/modules/plotting.html#sympy.plotting.plot.plot

Learn Multibody Dynamics

kyy = sm.sqrt(Iyy/m)
kyy

√
m (r sin (θ) + r)

2
+ 2m

(
r sin

(
θ + π

7

)
+ r
)2

+ 3m
(
−r cos

(
θ + π

3

)
+ r
)2

m
(13.26)

sm.plot(kyy.xreplace({m: 1, r: 1}));

kyy.xreplace({m: 1, r: 1, theta: theta_sol}).evalf()

0.255558185585985 (13.27)

162 Chapter 13. Mass Distribution

Learn Multibody Dynamics

13.6 Inertia Matrix

For mutually perpendicular unit vectors fixed in reference frame A, the moments of inertia with respect to O about each
unit vector and the products of inertia among the pairs of perpendicular unit vectors can be computed using the inertia
vector expressions in the prior section. This, in general, results in nine inertia scalars (6 unique scalars because of (13.19))
that describe the mass distribution of a set of particles or a rigid body in 3D space. These scalars are typically presented
as a symmetric inertia matrix (also called an inertia tensor) that takes this form:Ixx Ixy Ixz

Iyx Iyy Iyz
Izx Izy Izz

A

(13.28)

where the moments of inertia are on the diagonal and the products of inertia are the off diagonal entries. Eq. (13.19)
holds for the products of inertia, i.e. Ixy = Iyx, Ixz = Izx, and Iyz = Izy , and the subscript A indicates that these
scalars are relative to mutually perpendicular unit vectors âx, ây, âz fixed in A.
This matrix (or second order tensor) is similar to the vectors (or first order tensors) we’ve already worked with:v1v2

v3

A

(13.29)

Recall that we have a notation for writing such a vector that allows us to combine components expressed in different
reference frames:

v1âx + v2ây + v3âz (13.30)

There also exists an analogous form for second order tensors that are associated with different reference frames called a
dyadic.

13.7 Dyadics

If we introduce the outer product operator between two vectors we see that it generates a matrix akin to the inertia matrix
above. v1v2

v3

A

⊗

w1

w2

w3

A

=

v1w1 v1w2 v1w3

v2w1 v2w2 v2w3

v3w1 v3w2 v3w3

A

(13.31)

In SymPy Mechanics, outer products can be taken between two vectors to create the dyadic Q̆ using outer():

v1, v2, v3 = sm.symbols('v1, v2, v3')
w1, w2, w3 = sm.symbols('w1, w2, w3')

A = me.ReferenceFrame('A')

v = v1*A.x + v2*A.y + v3*A.z
w = w1*A.x + w2*A.y + w3*A.z

Q = me.outer(v, w)
Q

v1w1âx ⊗ âx + v1w2âx ⊗ ây + v1w3âx ⊗ âz + v2w1ây ⊗ âx + v2w2ây ⊗ ây + v2w3ây ⊗ âz + v3w1âz ⊗ âx + v3w2âz ⊗ ây + v3w3âz ⊗ âz
(13.32)

13.6. Inertia Matrix 163

https://en.wikipedia.org/wiki/Dyadics
https://en.wikipedia.org/wiki/Outer_product
https://docs.sympy.org/latest/modules/physics/vector/api/functions.html#sympy.physics.vector.functions.outer

Learn Multibody Dynamics

The result is not the matrix form shown in Eq. (13.31), but instead the result is a dyadic. The dyadic is the analogous
form for second order tensors to what we have been using for first order tensors, i.e. vectors. If the matrix form is needed,
it can be found with to_matrix() and naming a specific reference frame to express the dyadic in:

Q.to_matrix(A)

v1w1 v1w2 v1w3

v2w1 v2w2 v2w3

v3w1 v3w2 v3w3

 (13.33)

The dyadic is made up of scalars multiplied by unit dyads. Examples of unit dyads are:

me.outer(A.x, A.x)

âx ⊗ âx (13.34)

Unit dyads correspond to unit entries in the 3x3 matrix:

me.outer(A.x, A.x).to_matrix(A)

1 0 0
0 0 0
0 0 0

 (13.35)

Unit dyads are analogous to unit vectors. There are nine unit dyads in total associated with the three orthogonal unit
vectors. Here is another example:

me.outer(A.y, A.z)

ây ⊗ âz (13.36)

me.outer(A.y, A.z).to_matrix(A)

0 0 0
0 0 1
0 0 0

 (13.37)

These unit dyads can be formed from any unit vectors. This is convenient because we can create dyadics, just like
vectors, which are made up of components in different reference frames. For example:

theta = sm.symbols("theta")

A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')

B.orient_axis(A, theta, A.x)

P = 2*me.outer(B.x, B.x) + 3*me.outer(A.x, B.y) + 4*me.outer(B.z, A.z)
P

164 Chapter 13. Mass Distribution

https://docs.sympy.org/latest/modules/physics/vector/api/classes.html#sympy.physics.vector.dyadic.Dyadic.to_matrix

Learn Multibody Dynamics

2b̂x ⊗ b̂x + 3âx ⊗ b̂y + 4b̂z ⊗ âz (13.38)

The dyadic P̆ can be expressed in unit dyads of A

P.express(A)

2âx ⊗ âx + 3 cos (θ)âx ⊗ ây + 3 sin (θ)âx ⊗ âz − 4 sin (θ)ây ⊗ âz + 4 cos (θ)âz ⊗ âz (13.39)

P.to_matrix(A)

2 3 cos (θ) 3 sin (θ)
0 0 −4 sin (θ)
0 0 4 cos (θ)

 (13.40)

or B: :

P.express(B)

2b̂x ⊗ b̂x + 3b̂x ⊗ b̂y + 4 sin (θ)b̂z ⊗ b̂y + 4 cos (θ)b̂z ⊗ b̂z (13.41)

P.to_matrix(B)

2 3 0
0 0 0
0 4 sin (θ) 4 cos (θ)

 (13.42)

The unit dyadic is defined as:

Ŭ := âx ⊗ âx + ây ⊗ ây + âz ⊗ âz (13.43)

The unit dyadic can be created with SymPy:

U = me.outer(A.x, A.x) + me.outer(A.y, A.y) + me.outer(A.z, A.z)
U

âx ⊗ âx + ây ⊗ ây + âz ⊗ âz (13.44)

and it represents the identity matrix in A:

U.to_matrix(A)

13.7. Dyadics 165

Learn Multibody Dynamics

1 0 0
0 1 0
0 0 1

 (13.45)

Note that the unit dyadic is the same when expressed in any reference frame:

U.express(B).simplify()

b̂x ⊗ b̂x + b̂y ⊗ b̂y + b̂z ⊗ b̂z (13.46)

13.8 Properties of Dyadics

Dyadics have similar properties as vectors but are not necessarily commutative.
• Scalar multiplication: α(ū⊗ v̄) = αū⊗ v̄ = ū⊗ αv̄

• Distributive: ū⊗ (v̄ + w̄) = ū⊗ v̄ + ū⊗ w̄

• Left and right dot product with a vector (results in a vector):
– ū · (v̄ ⊗ w̄) = (ū · v̄)w̄

– (ū⊗ v̄) · w̄ = ū(v̄ · w̄)

• Left and right cross product with a vector (results in a dyadic):
– ū× (v̄ ⊗ w̄) = (ū× v̄)⊗ w̄

– (ū⊗ v̄)× w̄ = ū⊗ (v̄ × w̄)

• Dot products between arbitrary vectors ū and arbitrary dyadics V̆ are not commutative: V̆ · ū ̸= ū · V̆

• Dot products between arbitrary vectors and the unit dyadic are commutative and result in the vector itself: Ŭ · v̄ =
v̄ · Ŭ = v̄

13.9 Inertia Dyadic

Previously we defined the inertia vector for a set of ν particles as:

Īa =

ν∑
i=1

mir̄
Pi/O ×

(
n̂a × r̄Pi/O

)
(13.47)

Using the vector triple product identity: ā× (b̄× c̄) = b̄(ā · c̄)− c̄(ā · b̄), the inertia vector can be written as ([Kane1985],
pg. 68):

Īa =

ν∑
i=1

mi

[
n̂a

(
r̄Pi/O · r̄Pi/O

)
− r̄Pi/O

(
r̄Pi/O · n̂a

)]
(13.48)

Now by introducing a unit dyadic, we can write:

Īa =

ν∑
i=1

mi

[∣∣∣r̄Pi/O
∣∣∣2 n̂a · Ŭ − n̂a ·

(
r̄Pi/O ⊗ r̄Pi/O

)]
(13.49)

166 Chapter 13. Mass Distribution

https://en.wikipedia.org/wiki/Triple_product#Vector_triple_product

Learn Multibody Dynamics

n̂a can be pulled out of the summation:

Īa = n̂a ·
ν∑
i=1

mi

(∣∣∣r̄Pi/O
∣∣∣2 Ŭ − r̄Pi/O ⊗ r̄Pi/O

)
(13.50)

The inertia dyadic Ĭ of a set of S particles relative to O is now defined as:

ĬS/O :=

ν∑
i=1

mi

(∣∣∣r̄Pi/O
∣∣∣2 Ŭ − r̄Pi/O ⊗ r̄Pi/O

)
(13.51)

where:

Īa = n̂a · ĬS/O (13.52)

Note that we have now described the inertia of the set of particles without needing to specify a vector n̂a. This inertia
dyadic contains the complete description of inertia with respect to pointO about any axis. The vectors and dyadics in Eq.
(13.51) can be written in terms of any reference frame unit vectors or unit dyads, respectively.
If you have a solid body, an infinite set of points with a volumetric boundary, then you must solve the integral version
of (13.51) where the position of any location in the particle is parameterize by τ which can represent a volume, line, or
surface parameterization.

ĬS/O :=

∫
solid

ρ

(∣∣∣r̄P (τ)/O
∣∣∣2 Ŭ − r̄P (τ)/O ⊗ r̄P (τ)/O

)
dτ (13.53)

In SymPy Mechanics, simple inertia dyadics in terms of the unit vectors of a single reference frame can quickly be
generated with inertia(). For example:

Ixx, Iyy, Izz = sm.symbols('I_{xx}, I_{yy}, I_{zz}')
Ixy, Iyz, Ixz = sm.symbols('I_{xy}, I_{yz}, I_{xz}')

I = me.inertia(A, Ixx, Iyy, Izz, ixy=Ixy, iyz=Iyz, izx=Ixz)
I

Ixxâx ⊗ âx + Ixyâx ⊗ ây + Ixz âx ⊗ âz + Ixyây ⊗ âx + Iyyây ⊗ ây + Iyz ây ⊗ âz + Ixz âz ⊗ âx + Iyz âz ⊗ ây + Izz âz ⊗ âz
(13.54)

I.to_matrix(A)

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 (13.55)

This inertia dyadic can easily be expressed relative to another reference frame if the orientation is defined (demonstrated
above in Dyadics):

I.express(B).simplify()

Ixxb̂x ⊗ b̂x + (Ixy cos (θ) + Ixz sin (θ))b̂x ⊗ b̂y + (−Ixy sin (θ) + Ixz cos (θ))b̂x ⊗ b̂z + (Ixy cos (θ) + Ixz sin (θ))b̂y ⊗ b̂x + (−Ixy sin (θ) + Ixz cos (θ))b̂z ⊗ b̂x + (Iyy cos2 (θ) + Iyz sin (2θ) + Izz sin2 (θ))b̂y ⊗ b̂y + (−Iyy sin (2θ)
2

+ Iyz cos (2θ) +
Izz sin (2θ)

2
)b̂y ⊗ b̂z + (−Iyy sin (2θ)

2
+ Iyz cos (2θ) +

Izz sin (2θ)
2

)b̂z ⊗ b̂y + (Iyy sin2 (θ)− Iyz sin (2θ) + Izz cos2 (θ))b̂z ⊗ b̂z

(13.56)

or as a matrix in B:

13.9. Inertia Dyadic 167

https://docs.sympy.org/latest/modules/physics/mechanics/api/part_bod.html#sympy.physics.mechanics.functions.inertia

Learn Multibody Dynamics

I.express(B).simplify().to_matrix(B)

 Ixx Ixy cos (θ) + Ixz sin (θ) −Ixy sin (θ) + Ixz cos (θ)
Ixy cos (θ) + Ixz sin (θ) Iyy cos2 (θ) + Iyz sin (2θ) + Izz sin2 (θ) − Iyy sin (2θ)

2 + Iyz cos (2θ) + Izz sin (2θ)
2

−Ixy sin (θ) + Ixz cos (θ) − Iyy sin (2θ)
2 + Iyz cos (2θ) + Izz sin (2θ)

2 Iyy sin2 (θ)− Iyz sin (2θ) + Izz cos2 (θ)

(13.57)

This is equivalent to the matrix transform to express an inertia matrix in other reference frame (see some explanations
on Wikipedia about this transform):

BCA I ACB (13.58)

sm.simplify(B.dcm(A)*I.to_matrix(A)*A.dcm(B))

 Ixx Ixy cos (θ) + Ixz sin (θ) −Ixy sin (θ) + Ixz cos (θ)
Ixy cos (θ) + Ixz sin (θ) Iyy cos2 (θ) + Iyz sin (2θ) + Izz sin2 (θ) − Iyy sin (2θ)

2 + Iyz cos (2θ) + Izz sin (2θ)
2

−Ixy sin (θ) + Ixz cos (θ) − Iyy sin (2θ)
2 + Iyz cos (2θ) + Izz sin (2θ)

2 Iyy sin2 (θ)− Iyz sin (2θ) + Izz cos2 (θ)

(13.59)

Exercise

Fig. 13.2: Head tube angle of a bicycle.

Given the inertia dyadic of a bicycle’s handlebar and fork assembly about its mass center where n̂x points from the center
of the rear wheel to the center of the front wheel and n̂z points downward, normal to the ground, and the head tube angle
is 68 degrees from the ground plane, find the moment of inertia about the tilted steer axis given the inertia dyadic:

N = me.ReferenceFrame('N')

I = (0.25*me.outer(N.x, N.x) +
0.25*me.outer(N.y, N.y) +
0.10*me.outer(N.z, N.z) -
0.07*me.outer(N.x, N.z) -
0.07*me.outer(N.z, N.x))

I

0.25n̂x ⊗ n̂x + 0.25n̂y ⊗ n̂y + 0.1n̂z ⊗ n̂z − 0.07n̂x ⊗ n̂z − 0.07n̂z ⊗ n̂x (13.60)

168 Chapter 13. Mass Distribution

https://en.wikipedia.org/wiki/Moment_of_inertia#Inertia_tensor_of_rotation

Learn Multibody Dynamics

Solution
Create a new reference frame that has ĥz aligned with the steer axis.

H = me.ReferenceFrame('H')
H.orient_axis(N, sm.pi/2 - 68.0*sm.pi/180, N.y)

Dot the inertia dyadic twice with ĥz to get the moment of inertia about the steer axis:

I.dot(H.z).dot(H.z).evalf()

0.0724234290424714 (13.61)

Alternatively, you can use the matrix transformation.

I.to_matrix(N)

 0.25 0 −0.07
0 0.25 0

−0.07 0 0.1

 (13.62)

I_H = (H.dcm(N) @ I.to_matrix(N) @ N.dcm(H)).evalf()
I_H

 0.277576570957529 0 0.00174559176071922
0 0.25 0

0.00174559176071922 0 0.0724234290424714

 (13.63)

I_H[2, 2]

0.0724234290424714 (13.64)

13.10 Parallel Axis Theorem

If you know the central inertia dyadic of a rigid bodyB (or equivalently a set of particles) about its mass centerBo then it
is possible to calculate the inertia dyadic about any other pointO. To do so, you must account for the inertial contribution
due to the distance between the points O and Bo. This is done with the parallel axis theorem ([Kane1985], pg. 70):

ĬB/O = ĬB/Bo + ĬBo/O (13.65)

13.10. Parallel Axis Theorem 169

https://en.wikipedia.org/wiki/Parallel_axis_theorem

Learn Multibody Dynamics

The last term is the inertia of a particle with massm (total mass of the body or set of particles) located at the mass center
about point O.

ĬBo/O = m

(∣∣∣r̄Bo/O
∣∣∣2 Ŭ − r̄Bo/O ⊗ r̄Bo/O

)
(13.66)

WhenBo is displaced from pointO by three Cartesian distances dx, dy, dz the general form of the last term in Eq. (13.65)
can be found:

dx, dy, dz, m = sm.symbols('d_x, d_y, d_z, m')

N = me.ReferenceFrame('N')

r_O_Bo = dx*N.x + dy*N.y + dz*N.z

U = me.outer(N.x, N.x) + me.outer(N.y, N.y) + me.outer(N.z, N.z)

I_Bo_O = m*(me.dot(r_O_Bo, r_O_Bo)*U - me.outer(r_O_Bo, r_O_Bo))
I_Bo_O

m
(
d2y + d2z

)
n̂x ⊗ n̂x +m

(
d2x + d2z

)
n̂y ⊗ n̂y +m

(
d2x + d2y

)
n̂z ⊗ n̂z − dxdymn̂x ⊗ n̂y − dxdzmn̂x ⊗ n̂z − dxdymn̂y ⊗ n̂x − dydzmn̂y ⊗ n̂z − dxdzmn̂z ⊗ n̂x − dydzmn̂z ⊗ n̂y

(13.67)

The matrix form of this dyadic shows the typical presentation of the parallel axis addition term:

I_Bo_O.to_matrix(N)

m (d2y + d2z
)

−dxdym −dxdzm
−dxdym m

(
d2x + d2z

)
−dydzm

−dxdzm −dydzm m
(
d2x + d2y

)
 (13.68)

13.11 Principal Axes and Moments of Inertia

If the inertia vector Īa with respect to pointO is parallel to its unit vector n̂a then the line throughO and parallel to n̂a is
called a principal axis of the set of particles or rigid body. The plane that is normal to n̂a is called a principal plane. The
moment of inertia about this principal axis is called a principal moment of inertia. The consequence of Īa being parallel
to n̂a is that the products of inertia are all zero. The principal inertia dyadic can then be written as so:

ĬB/O = I11b̂1 ⊗ b̂1 + I22b̂2 ⊗ b̂2 + I33b̂3 ⊗ b̂3 (13.69)

where b̂1, b̂2, b̂3 are mutually perpendicular unit vectors inB that are each parallel to a principal axis and I11, I22, I33 are
all principal moments of inertia.
Geometrically symmetric objects with uniform mass density have principal planes that are perpendicular with the planes
of symmetry of the geometry. But it is important to note that there also exist unique principal axes for all non-symmetric
and non-uniform density objects, i.e. having geometric symmetry is not necessary to have principal moments of inertia;
all rigid bodies have principal moments of inertia and associated axes.
The principal axes and their associated principal moments of inertia can be found by solving the eigenvalue problem. The
eigenvalues of an arbitrary inertia matrix are the principal moments of inertia and the eigenvectors are the unit vectors
parallel to the mutually perpendicular principal axes. Recalling that the inertia matrix is a symmetric matrix of real

170 Chapter 13. Mass Distribution

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

Learn Multibody Dynamics

numbers, we know then that it is Hermitian and therefore all of its eigenvalues are real. Symmetric matrices are also
diagonalizable and the eigenvectors will then be orthonormal.

Warning: Finding the eigenvalues of a 3x3 matrix require finding the roots of the cubic equation. It is possible to
find the symbolic solution, but it is not a simple result. Unless you really need the symbolic result, it is best to solve
for principal axes and moments of inertia numerically.

Here is an example of finding the principal axes and associated moments of inertia with SymPy:

I = sm.Matrix([[1.0451, 0.0, -0.1123],
[0.0, 2.403, 0.0],
[-0.1123, 0.0, 1.8501]])

I

 1.0451 0 −0.1123
0 2.403 0

−0.1123 0 1.8501

 (13.70)

The eigenvects() method on a SymPy matrix returns a list of tuples that each contain (eigenvalue,
multiplicity, eigenvector):

ev1, ev2, ev3 = I.eigenvects()

The results are a bit confusing to parse but you can extract the relevant information as follows.
The first and largest eigenvalue (principal moment of inertia) and its associated eigenvector (principal axis direction) is:

ev1[0]

2.403 (13.71)

ev1[2][0]

 0
1.0
0

 (13.72)

This shows that the y axes was already the major principal axis. The second eigenvalue and its associated eigenvector
is:

ev2[0]

1.02972736390139 (13.73)

13.11. Principal Axes and Moments of Inertia 171

https://en.wikipedia.org/wiki/Hermitian_matrix
https://en.wikipedia.org/wiki/Cubic_equation
https://docs.sympy.org/latest/modules/matrices/matrices.html#sympy.matrices.matrices.MatrixEigen.eigenvects

Learn Multibody Dynamics

ev2[2][0]

−0.990760351805416
0

−0.135624206137434

 (13.74)

This is the smallest eigenvalue and thus the minor moment of inertia about the minor principal axis. The third eigenvalue
and its associated eigenvector give the intermediate principal axis and the intermediate moment of inertia:

ev3[0]

1.86547263609861 (13.75)

ev3[2][0]

 0.135624206137434
0

−0.990760351805416

 (13.76)

13.12 Angular Momentum

The angular momentum vector of a rigid body B in reference frame A about point O is defined as:

AH̄B/O := ĬB/O · Aω̄B (13.77)

The dyadic-vector dot product notation makes this definition succinct. If the point is instead the mass center of B, point
Bo, then the inertia dyadic is the central inertia dyadic and the result is the central angular momentum in A is:

AH̄B/Bo = ĬB/Bo · Aω̄B (13.78)

Here is an example of calculating the angular momentum expressed in the body fixed reference frame in SymPy Me-
chanics:

Ixx, Iyy, Izz = sm.symbols('I_{xx}, I_{yy}, I_{zz}')
Ixy, Iyz, Ixz = sm.symbols('I_{xy}, I_{yz}, I_{xz}')
w1, w2, w3 = me.dynamicsymbols('omega1, omega2, omega3')

B = me.ReferenceFrame('B')

I = me.inertia(B, Ixx, Iyy, Izz, Ixy, Iyz, Ixz)

A_w_B = w1*B.x + w2*B.y + w3*B.z

I.dot(A_w_B)

172 Chapter 13. Mass Distribution

Learn Multibody Dynamics

(Ixxω1 + Ixyω2 + Ixzω3)b̂x + (Ixyω1 + Iyyω2 + Iyzω3)b̂y + (Ixzω1 + Iyzω2 + Izzω3)b̂z (13.79)

If the body fixed unit vectors happen to be aligned with the principal axes of the rigid body, then the central angular
momentum simplifies:

I1, I2, I3 = sm.symbols('I_1, I_2, I_3')
w1, w2, w3 = me.dynamicsymbols('omega1, omega2, omega3')

B = me.ReferenceFrame('B')

I = me.inertia(B, I1, I2, I3)

A_w_B = w1*B.x + w2*B.y + w3*B.z

I.dot(A_w_B)

I1ω1b̂x + I2ω2b̂y + I3ω3b̂z (13.80)

13.12. Angular Momentum 173

Learn Multibody Dynamics

174 Chapter 13. Mass Distribution

CHAPTER

FOURTEEN

FORCE, MOMENT, AND TORQUE

Note: You can download this example as a Python script: loads.py or Jupyter Notebook: loads.ipynb.

import sympy as sm
import sympy.physics.mechanics as me
me.init_vprinting(use_latex='mathjax')

class ReferenceFrame(me.ReferenceFrame):

def __init__(self, *args, **kwargs):

kwargs.pop('latexs', None)

lab = args[0].lower()
tex = r'\hat{{{}}}_{}'

super(ReferenceFrame, self).__init__(*args,
latexs=(tex.format(lab, 'x'),

tex.format(lab, 'y'),
tex.format(lab, 'z')),

**kwargs)
me.ReferenceFrame = ReferenceFrame

14.1 Learning Objectives

After completing this chapter readers will be able to:
• Calculate the resultant force acting on a set of particles or bodies.
• Calculate the moment of a resultant about a point.
• Find the equivalent couple of a torque and resultant to simplify forces applied to bodies.
• Determine if a force is noncontributing or not.
• Define sign conventions for forces.
• Define forces for gravity, springs, friction, air drag, and collisions.

175

Learn Multibody Dynamics

14.2 Force

A force is an abstraction we use to describe something that causes mass to move (e.g. accelerate from a stationary state).
There are four fundamental forces of nature of which all other forces can be derived. We describe the resulting effect of
these fundamental forces in this text. Moments and torques arise from forces and are useful in describing what causes
distributed mass rotation. Forces, moments, and torques have magnitude and direction and thus we use vectors to describe
them mathematically.

14.3 Bound and Free Vectors

Vectors may have a line of action. A line of action is parallel to the vector and passes through a particular point. If a
vector has a line of action, it is said to be bound to its line of action. If a vector is not bound to a line of action it is said
to be free.
Angular velocity is an example of a free vector. It has a direction, sense, and magnitude, but is not associated with any
line of action. For example, if a disc can rotate around a fixed point, you can place a body anywhere on this disc and the
body will always have the same angular velocity. A force vector, on the other hand, is bound. If a force is applied to a
rigid body, we must know where on the body it is applied to resolve the force’s effect. A force vector acting on rigid body
B at point P has a line of action through P and parallel to the force vector.

Fig. 14.1: Depicition of bound a) and free b) vectors.

14.4 Moment

If a vector is a bound vector, then we can define its moment about a point. The moment M̄ of bound vector v̄ about point
P is a vector itself and is defined as ([Kane1985], pg. 90):

M̄ := r̄L/P × v̄ (14.1)

r̄L/P is a position vector from P to any point Li on the line of action L of v̄. The cross product definition ensures that
the the moment does not depend on the choice of the point on the line.
A moment can be the result of a set of vectors. The resultant of a set S of vectors v̄1, . . . , v̄ν is defined as:

R̄S :=

ν∑
i=1

v̄i (14.2)

176 Chapter 14. Force, Moment, and Torque

https://en.wikipedia.org/wiki/Force#Fundamental_interactions

Learn Multibody Dynamics

Fig. 14.2: v̄ is bound to a line L. The moment can be calculated based on a position vector from P to any point on the
line, for example L1, L2 or L3 as shown.

If each vector in the resultant is bound, the sum of the moments due to each vector about P is called the moment of R̄S
about P . This summation can be written as:

M̄S/P =

ν∑
i=1

r̄Li/P × v̄i (14.3)

where Li is a point on the line of action of the associated v̄i.
The moment of the set of bound vectors S about one point P is related to the moment of the set about another point Q
by ([Kane1985], pg. 91):

M̄S/P = M̄S/Q + r̄P/Q × R̄S/Q (14.4)

where R̄S/Q is the resultant of the set S bound to a line of action through point Q.
For example, take the setS of two bound vectors F̄1 and F̄2 bound to lines of action through pointsP1 andP2, respectively.
Below I’ve given the vectors some arbitrary direction and magnitude.

N = me.ReferenceFrame('N')

F1 = 2*N.x + 3*N.y
F2 = -4*N.x + 5*N.y

r_O_P1 = 2*N.x
r_O_P2 = 3*N.x

M̄S/P can be calculated directly using Eq. (14.3):

r_O_P = -5*N.x

M_S_P = me.cross(r_O_P1 - r_O_P, F1) + me.cross(r_O_P2 - r_O_P, F2)
M_S_P

61n̂z (14.5)

Or if M̄S/Q is known, as well as r̄P/Q, then the Eq. (14.4) could be used:

14.4. Moment 177

Learn Multibody Dynamics

r_O_Q = 5*N.y
M_S_Q = me.cross(r_O_P1 - r_O_Q, F1) + me.cross(r_O_P2 - r_O_Q, F2)

M_S_P = M_S_Q + me.cross(r_O_Q - r_O_P, F1 + F2)
M_S_P

61n̂z (14.6)

14.5 Couple

A set S of bound vectors with a resultant equal to zero is called a couple. A couple can have as many vectors as desired
or needed with a minimum number being two, such that R̄S = 0. A couple composed of two vectors is called a simple
couple. Fig. 14.3 shows a few examples of couples.

Fig. 14.3: Three couples: a) simple couple, b) & c) couples made up of multiple forces

The torque of a couple, T̄ , is the moment of the couple about a point. Because the resultant of a couple is zero it follows
from (14.4), the torque of a couple is the same about all points. The torque, being a moment, is also a vector.

14.6 Equivalence & Replacement

Two sets of bound vectors are equivalent when they have these two properties:
1. equal resultants
2. equal moments about any point

If 1. and 2. are true, the sets are said to be replacements of each other. Couples that have equal torques are equivalent,
because the resultants are zero and moments about any point are equal to the torque.
Given a set of bound vectors S and a set of bound vectors that consist of a torque of a couple T̄ and vector v̄ bound to an
arbitrary point P it is a necessary and sufficient condition that the second set is a replacement of the first if ([Kane1985],
pg. 95):

T̄ = M̄S/P

v̄ = R̄S/P
(14.7)

178 Chapter 14. Force, Moment, and Torque

Learn Multibody Dynamics

This means that every set of bound vectors can be replaced by an equivalent torque of a couple and a single bound vector
that is the resultant of the replaced set. This replacement simplifies the description of forces acting on bodies.
Take for example the birds eye view of a four wheeled car which has front steering and motors at each wheel allowing for
precise control of the propulsion forces at each wheel. A diagram of the forces acting at each wheel is shown in Fig. 14.4.

Fig. 14.4: Set S of forces acting at each tire can be replaced with a resultant and a torque at a specified point, in this case
Bo.

In SymPy Mechanics, first define the symbols:

l, w = sm.symbols('l, w')
Ffl, Ffr, Frl, Frr = me.dynamicsymbols('F_{fl}, F_{fr}, F_{rl}, F_{rr}')
alphafl, alphafr = me.dynamicsymbols(r'\alpha_{fl}, \alpha_{fr}')
alpharl, alpharr = me.dynamicsymbols(r'\alpha_{rl}, \alpha_{rr}')
delta = me.dynamicsymbols('delta')

With the symbols defined, I use some auxiliary reference frames to establish the orientations with B being the car body,
W being the steered front wheels, and the others to establish the direction of the force at each wheel.

B = me.ReferenceFrame('B')
W = me.ReferenceFrame('W')
FR = me.ReferenceFrame('F_R')
FL = me.ReferenceFrame('F_L')
RR = me.ReferenceFrame('R_R')
RL = me.ReferenceFrame('R_L')

W.orient_axis(B, delta, B.z)
FR.orient_axis(W, alphafr, W.z)
FL.orient_axis(W, alphafl, W.z)
RR.orient_axis(B, alpharr, B.z)
RL.orient_axis(B, alpharl, B.z)

The resultant of the forces expressed in the B frame is then:

14.6. Equivalence & Replacement 179

Learn Multibody Dynamics

R = Ffl*FL.x + Ffr*FR.x + Frl*RL.x + Frr*RR.x
R.express(B).simplify()

(Ffl cos (αfl + δ) + Ffr cos (αfr + δ) + Frl cos (αrl) + Frr cos (αrr))b̂x + (Ffl sin (αfl + δ) + Ffr sin (αfr + δ) + Frl sin (αrl) + Frr sin (αrr))b̂y
(14.8)

This resultant is bound to a line of action through Bo. The associated couple is then calculated as the total moment
about Bo:

T = (me.cross(l/2*B.x - w/2*B.y, Ffl*FL.x) +
me.cross(l/2*B.x + w/2*B.y, Ffr*FR.x) +
me.cross(-l/2*B.x - w/2*B.y, Frl*RL.x) +
me.cross(-l/2*B.x + w/2*B.y, Frr*RR.x))

T = T.express(B).simplify()
T

(
(l sin (αfl + δ) + w cos (αfl + δ))Ffl

2
+

(l sin (αfr + δ)− w cos (αfr + δ))Ffr
2

− (l sin (αrl)− w cos (αrl))Frl
2

− (l sin (αrr) + w cos (αrr))Frr
2

)b̂z

(14.9)

Since we can always describe the forces acting on a rigid body as a resultant force and an associate torque of a couple,
we will often take advantage of this simpler form for constructing models.

14.7 Specifying Forces and Torques

Forces are bound vectors, so we have to define their lines of action. This is best done by specifying the points on which
each force acts, thus we will always use a vector and a point to fully describe the force. Methods and functions in SymPy
Mechanics that make use of forces will typically require a tuple containing a point and a vector, for example the resultant
force RS/Bo acting on the mass center of the car would be specified like so:

Bo = me.Point('Bo')
force = (Bo, R)
force

(Bo, F_{fr}(t)*F_R.x + F_{fl}(t)*F_L.x + F_{rr}(t)*R_R.x + F_{rl}(t)*R_L.x)

Torques of a couple are free vectors (not bound to a line of action) but represent a couple acting on a rigid body, thus a
reference frame associated with a rigid body and the vector representing the torque will be used to describe the torque in
SymPy Mechanics. For example:

torque = (B, T)
torque

(B,
((l*sin(\alpha_{fl}(t) + delta(t)) + w*cos(\alpha_{fl}(t) + delta(t)))*F_{fl}(t)/2 +␣
↪→(l*sin(\alpha_{fr}(t) + delta(t)) - w*cos(\alpha_{fr}(t) + delta(t)))*F_{fr}(t)/2 -␣
↪→(l*sin(\alpha_{rl}(t)) - w*cos(\alpha_{rl}(t)))*F_{rl}(t)/2 - (l*sin(\alpha_{rr}
↪→(t)) + w*cos(\alpha_{rr}(t)))*F_{rr}(t)/2)*B.z)

We will often refer to forces and torques collectively as loads.

180 Chapter 14. Force, Moment, and Torque

Learn Multibody Dynamics

Note: The two cells above do not render the math nicely due to this SymPy bug: https://github.com/sympy/sympy/
issues/24967.

14.8 Equal & Opposite

Both forces and torques applied to a multibody system must obey Newton’s Third Law, i.e. that forces and torques act
equal and opposite. Take for example a torque from a motor that causes a pinned lever B to rotate relative to the ground
N shown in Fig. 14.5. The motor torque can be modeled to occur between the stator and the rotor. We’ve arbitrarily
selected the sign convention shown, i.e. a positive value of torque applies a positive torque to B and a negative torque to
N if the torque is parallel to n̂z = b̂z .

Fig. 14.5: A motor stator N fixed to ground with an arm fixed to the motor rotor B shown as one unit in a) and as
separate bodies in b) with equal and opposite torque vectors applied to the pair of bodies representing the torque of a
couple generated by the motor.

The motor torque can be specified as a time varying vector:

T, q = me.dynamicsymbols('T, q')

N = me.ReferenceFrame('N')
B = me.ReferenceFrame('B')

Tm = T*N.z

Then the equal and opposite torques are captured by these two tuples:

(B, Tm), (N, -Tm)

((B, T(t)*N.z), (N, - T(t)*N.z))

with equal and opposite torques applied to each body.

14.8. Equal & Opposite 181

https://github.com/sympy/sympy/issues/24967
https://github.com/sympy/sympy/issues/24967
https://en.wikipedia.org/wiki/Newton's_laws_of_motion#Third_law

Learn Multibody Dynamics

Warning: The sign conventions are really just a convention. It is also valid to choose (B, -Tm), (N, Tm) or
even (B, Tm), (N, Tm) and (B, -Tm), (B, -Tm). But it is useful to choose a sign convention such that
when the signs of angular velocity and torque are the same it corresponds to power into the system. So, for example,
B.orient_axis(N, q, N.z) corresponds to (T*N.z, B) and power in. The key thing is that you know
what your convention is so that you can interpret numerical results and signs correctly.

14.9 Contributing and Noncontributing Forces

Contributing forces are those that can do work on the multibody system. Work of a force F̄ acting over path S is defined
as the following line integral:

W =

∫
S

F̄ · ds̄ (14.10)

where ds̄ is the differential vector tangent to the path at the point the force is applied.
For example, the gravitational force acting on a particle moving through a unidirectional constant gravitational field (i.e.
where the gravitational force is equal in magnitude, doesn’t change, and always the same direction) does work on the
system unless the particle moves perpendicular to the field.
Noncontributing forces never do work on the system. For example, when a force acts between two points that have no
relative motion, no work is done. Examples of noncontributing forces:

1. contact forces on particles across smooth (frictionless) surfaces of rigid bodies
2. any internal contact and body (distance) forces between any two points in a rigid body
3. contact forces between bodies rolling without slipping on each other

In the next chapter, we will see how the use of generalized coordinates relieve us from having to specify any noncon-
tributing forces.

14.10 Gravity

We will often be interested in a multibody system’s motion when it is subject to gravitational forces. The simplest case
is a constant unidirectional gravitational field, which is an appropriate model for objects moving on and near the Earth’s
surface. The gravitational forces can be applied solely to the mass centers of each rigid body as a resultant force. The
gravitational torque on the bodies is zero because the force is equal in magnitude for each particle in the body. See
[Kane1985] pg. 110 for the more general model of Newton’s Law of Universal Gravitation where this is not the case.
Studies of spacecraft dynamics often require considering both gravitational forces and moments.
In SymPy Mechanics, a gravitational force acting on a particle of massm with acceleration due to gravity being g in the
−n̂y direction would take this form:

m, g = sm.symbols('m, g')
Fg = -m*g*N.y
Fg

−gmn̂y (14.11)

182 Chapter 14. Force, Moment, and Torque

https://en.wikipedia.org/wiki/Work_(physics)
https://en.wikipedia.org/wiki/Line_integral
https://en.wikipedia.org/wiki/Newton's_law_of_universal_gravitation

Learn Multibody Dynamics

14.11 Springs & Dampers

Idealized springs and dampers are useful models of elements that have distance and velocity dependent forces and torques.
A spring with free length q0 and where q1, q2 locate the ends of the spring along a line parallel to n̂x is shown in Fig. 14.6.
If we displace P in the positive n̂x direction the spring will apply a force in the negative n̂x direction on point P . So we
chose a sign convention that the force on P from the spring is opposite the direction of the displacement.

Fig. 14.6: Diagram of a spring with a sign convention that tension is positive. P is shown separated from the end of the
spring to show the equal and opposite forces.

If the spring is linear with stiffness k the spring force vector is then:

q0, k = sm.symbols('q0, k')
q1, q2 = me.dynamicsymbols('q1, q2')

displacement = q2 - q1 - q0
displacement

−q0 − q1 + q2 (14.12)

Here a positive displacement represents the spring in tension and a negative displacement is compression.

Fs = -k*displacement*N.x
Fs

−k (−q0 − q1 + q2) n̂x (14.13)

Dampers are often used in parallel or series with springs to provide an energy dissipation via viscous-like friction.
Springs combined with dampers allow for classical second order under-, over-, and critically-damped motion. A linear
viscous damper with damping coefficient c that resists motion can be defined like so:

c = sm.symbols('c')
t = me.dynamicsymbols._t

Fc = -c*displacement.diff(t)*N.x
Fc

14.11. Springs & Dampers 183

https://en.wikipedia.org/wiki/Dashpot
https://en.wikipedia.org/wiki/Damping

Learn Multibody Dynamics

−c (−q̇1 + q̇2) n̂x (14.14)

14.12 Friction

Coulomb’s Law of Friction provides simple model of dry friction between two objects. When the two objects are in
motion with respect to each other, there is a constant magnitude force that resists the motion. The force is independent
of contact area and is proportional to the normal force between the objects. Coulomb’s kinetic friction model takes the
scalar form:

Ff =

µkFn v < 0

0 v = 0

−µkFn v > 0

(14.15)

where FN is the normal force between the two objects, v is the relative speed between the two objects, and µk is the
coefficient of kinetic friction. At v = 0 kinetic friction is zero, but two objects in contact with a normal force can
resist moving through static friction. When v = 0 any force perpendicular to the normal force can be generated up to a
magnitude of Ff = µsFn where µs is the coefficient of static friction and µs > µk. Eq. (14.15) leaves this static case
ambiguous, but it can be extended to:

Ff =

µkFn v < 0

[−µsFn, µsFn] v = 0

−µkFn v > 0

(14.16)

SymPy’s Piecewise is one way to create a symbolic representation of kinetic friction:

mu, m, g = sm.symbols('mu, m, g')

Fn = m*g

displacement = q2 - q1

Ff = sm.Piecewise((mu*Fn, displacement.diff(t) < 0),
(-mu*Fn, displacement.diff(t) > 0),
(0, True))*N.x

Ff

gmµ for q̇1 − q̇2 > 0

−gmµ for q̇1 − q̇2 < 0

0 otherwise
n̂x (14.17)

The signum function (sign) can also be used in a similar and simpler form:

Ff = -mu*Fn*sm.sign(displacement.diff(t))*N.x
Ff

−gmµ sign (−q̇1 + q̇2)n̂x (14.18)

Eq. (14.16) is a sufficient model for many use cases, but it does not necessarily capture all observed effects. Fig. 14.7
shows a modification of Coulomb model that includes the Stribeck effect and viscous friction. Flores et. al have a nice
summary of several other friction models that could be used [Flores2023].

184 Chapter 14. Force, Moment, and Torque

https://en.wikipedia.org/wiki/Friction
https://docs.sympy.org/latest/modules/functions/elementary.html#sympy.functions.elementary.piecewise.Piecewise
https://en.wikipedia.org/wiki/Sign_function
https://docs.sympy.org/latest/modules/functions/elementary.html#sympy.functions.elementary.complexes.sign
https://en.wikipedia.org/wiki/Stribeck_curve

Learn Multibody Dynamics

Fig. 14.7: Extensions to the (a) Coulomb Dry Friction model: (b) Stribeck effect and (c) Stribeck and viscous effects.
Taken from [Flores2023] (Creative Commons BY-NC-ND 4.0).

14.13 Aerodynamic Drag

Aerodynamic drag of a blunt body at low Reynolds numbers is dominated by the frontal area drag and the magnitude of
this drag force can be modeled with the following equation:

Fd =
1

2
ρCdAv

2 (14.19)

where ρ is the density of the air, Cd is the drag coefficient,A is the frontal area, and v is the air speed relative to the body.
If a body is moving in still air at an arbitrary velocity and point P is the aerodynamic center of the body then the
aerodynamic drag force vector that opposes the motion can be found with such an equation:

A, Cd, rho = sm.symbols('A, C_d, rho')
ux, uy, uz = me.dynamicsymbols('u_x, u_y, u_z', real=True)

N_v_P = ux*N.x + uy*N.y + uz*N.z

Fd = -N_v_P.normalize()*Cd*A*rho/2*N_v_P.dot(N_v_P)
Fd

−
ACdρ

√
u2x + u2y + u2zux

2
n̂x −

ACdρ
√
u2x + u2y + u2zuy

2
n̂y −

ACdρ
√
u2x + u2y + u2zuz

2
n̂z

(14.20)

If the motion is only along the n̂x direction, for example, the equation for the drag force vector reduces to:

Fd.xreplace({uy: 0, uz:0})

−ACdρux |ux|
2

n̂x (14.21)

Managing the correct direction of the force, so that it opposes motion and is applied at the aerodynamic center, is
important. The drag coefficient and frontal area can also change dynamically depending on the shape of the object and
the direction the air is flowing over it.

14.13. Aerodynamic Drag 185

https://en.wikipedia.org/wiki/Drag_(physics)

Learn Multibody Dynamics

14.14 Collision

If two points, a point and a surface, or two surfaces collide the impact behavior depends on the material properties,
mass, and kinematics of the colliding bodies. There are two general approaches to modeling collision. The first is the
Newtonian method in which you consider the momentum change, impulse, before and after collision. For a particle
impacting a surface, this takes the basic form:

mv+ = −emv− (14.22)

where m is the particle’s mass, v− is the speed before impact, v+ is the speed after impact, and e is the coefficient of
restitution. The momentum after impact will be opposite and equal to the momentum before impact for a purely elastic
collision e = 1 and the magnitude of the momentum will be less if the collision is inelastic 0 < e < 1. This approach
can be extended to a multibody system; see [Flores2023] for an introduction to this approach.
The Newtonian model does not consider the explicit behavior of the force that generates the impulse at collision. Here we
will take an alternative approach by modeling the force explicitly. Such contact force models can provide more accurate
results, at the cost of longer computation times. Most impact force models build upon Hunt and Crossley’s seminal model
[Hunt1975] which is based on Hertzian contact theory. Hunt and Crossley model the impact as a nonlinear function of
penetration depth and its rate. The force is made up of a nonlinear stiffness and a damping term that take this form:

fc = kzn + cznż (14.23)

k is the nonlinear contact stiffness, n is the stiffness exponent, z the contact penetration, ż is the penetration velocity,
and c is the hysteresis damping factor. The damping scales with the penetration depth. k and c can be determined from
the material properties and the shape of the colliding objects and can be related to the coefficient of restitution. n is 3/2
based on the Hertzian contact theory.

Fig. 14.8: Particle P colliding with a surface.

For example, if modeling a particle P that impacts a surface normal to n̂z that contains point O the penetration zp of the
particle into the surface (if positive z is out and negative z is inside the surface) can be described with:

zp =
|r̄P/O · n̂z| − r̄P/O · n̂z

2
(14.24)

This difference between the absolute value and the value itself is equivalent to this piecewise function:

zp =

{
0 r̄P/O · n̂z > 0

r̄P/O · n̂z r̄P/O · n̂z ≤ 0
(14.25)

186 Chapter 14. Force, Moment, and Torque

https://en.wikipedia.org/wiki/Coefficient_of_restitution
https://en.wikipedia.org/wiki/Coefficient_of_restitution
https://en.wikipedia.org/wiki/Contact_mechanics

Learn Multibody Dynamics

In SymPy, this can be defined like so:

x, y, z, zd = me.dynamicsymbols('x, y, z, \dot{z}', real=True)

r_O_P = x*N.x + y*N.y + z*N.z

zh = r_O_P.dot(N.z)

zp = (sm.Abs(zh) - zh)/2
zp

−z
2
+

|z|
2

(14.26)

The force can now be formulated according to (14.23):

k, c = sm.symbols('k, c')

Fz = (k*zp**(sm.S(3)/2) + c*zp**(sm.S(3)/2)*zd)*N.z
Fz

(c

(
−z
2
+

|z|
2

) 3
2

ż + k

(
−z
2
+

|z|
2

) 3
2

)n̂z (14.27)

We can check whether the force is correct for positive and negative z:

Fz.xreplace({z: sm.Symbol('z', positive=True)})

0 (14.28)

Fz.xreplace({z: sm.Symbol('z', negative=True)})

(c (−z)
3
2 ż + k (−z)

3
2)n̂z (14.29)

More on the Hunt-Crossley model and alterations on the model are summarized in [Flores2023].
The impact force model is often combined with a friction model to generate a friction force for impacts that are not
perfectly normal to the contacting surfaces. For example, Coulomb friction force can slow the particle’s sliding on the
surface if we know the tangential velocity components vx and vy at the contact location. This lets us write to tangential
friction force components:

mu = sm.symbols('mu')

vx = r_O_P.dot(N.x).diff(t)
vy = r_O_P.dot(N.y).diff(t)

Fx = -sm.Abs(vx)/vx*mu*Fz.dot(N.z)*N.x
Fx

14.14. Collision 187

Learn Multibody Dynamics

−
µ

(
c
(
− z

2 + |z|
2

) 3
2

ż + k
(
− z

2 + |z|
2

) 3
2

)
|ẋ|

ẋ
n̂x

(14.30)

Fy = -sm.Abs(vy)/vy*mu*Fz.dot(N.z)*N.y
Fy

−
µ

(
c
(
− z

2 + |z|
2

) 3
2

ż + k
(
− z

2 + |z|
2

) 3
2

)
|ẏ|

ẏ
n̂y

(14.31)

These measure numbers for the force vector then evaluate to zero when there is no penetration zp and evaluates to a
spring and damper and Coulomb friction when there is. For example, using so numerical values to set the penetration:

vz = me.dynamicsymbols('v_z', negative=True)

repl = {zd: vz, z: sm.Symbol('z', positive=True)}

Fx.xreplace(repl), Fy.xreplace(repl), Fz.xreplace(repl)

(0, 0, 0) (14.32)

vz = me.dynamicsymbols('v_z', negative=True)

repl = {zd: vz, z: sm.Symbol('z', negative=True)}

Fx.xreplace(repl), Fy.xreplace(repl), Fz.xreplace(repl)

−
µ
(
c (−z)

3
2 vz + k (−z)

3
2

)
|ẋ|

ẋ
n̂x, −

µ
(
c (−z)

3
2 vz + k (−z)

3
2

)
|ẏ|

ẏ
n̂y, (c (−z)

3
2 vz + k (−z)

3
2)n̂z

 (14.33)

Finally, the total force on the particle contacting the surface can be fully described:

Fx + Fy + Fz

−
µ

(
c
(
− z

2 + |z|
2

) 3
2

ż + k
(
− z

2 + |z|
2

) 3
2

)
|ẋ|

ẋ
n̂x −

µ

(
c
(
− z

2 + |z|
2

) 3
2

ż + k
(
− z

2 + |z|
2

) 3
2

)
|ẏ|

ẏ
n̂y + (c

(
−z
2
+

|z|
2

) 3
2

ż + k

(
−z
2
+

|z|
2

) 3
2

)n̂z

(14.34)

188 Chapter 14. Force, Moment, and Torque

CHAPTER

FIFTEEN

GENERALIZED FORCES

Note: You can download this example as a Python script: generalized-forces.py or Jupyter Notebook:
generalized-forces.ipynb.

import sympy as sm
import sympy.physics.mechanics as me
me.init_vprinting(use_latex='mathjax')

class ReferenceFrame(me.ReferenceFrame):

def __init__(self, *args, **kwargs):

kwargs.pop('latexs', None)

lab = args[0].lower()
tex = r'\hat{{{}}}_{}'

super(ReferenceFrame, self).__init__(*args,
latexs=(tex.format(lab, 'x'),

tex.format(lab, 'y'),
tex.format(lab, 'z')),

**kwargs)
me.ReferenceFrame = ReferenceFrame

15.1 Learning Objectives

After completing this chapter readers will be able to:
• Calculate partial velocities given generalized speeds
• Calculate generalized active forces for a system of particles and rigid bodies
• Calculate generalized inertia forces for a system of particles and rigid bodies

189

Learn Multibody Dynamics

15.2 Introduction

At this point we have developed the three primary ingredients to formulate the equations of motion of a multibody system:
1. Angular and Translational Kinematics
2. Mass and Mass Distribution
3. Forces, Moments, and Torques

For a single rigid body B with massmB , mass center Bo, and central inertia dyadic ĬB/Bo having a resultant force F̄ at
Bo and moment M̄ about Bo the Newton-Euler Equations of Motion in the inertial reference frame N can be written as
follows:

F̄ =
Ndp̄

dt
where p̄ = mB

N v̄Bo

M̄ =
NdH̄

dt
where H̄ = ĬB/Bo · N ω̄B

(15.1)

The left hand side of the above equations describes the forces, moments, and torques (3.) acting on the rigid body and
the right hand side describes the kinematics (1.) and the mass distribution (2.).
For a set of particles and rigid bodies that make up a multibody system defined with generalized coordinates, generalized
speeds, and constraints, the generalized speeds characterize completely the motion of the system. The velocities and
angular velocities of every particle and rigid body in the system are a function of these generalized speeds. The time
rate of change of the generalized speeds dudt will then play a critical role in the formulation of the right hand side of the
multibody system equations of motion.
Take for example the multibody system shown in Fig. 15.1. A force F̄ applied at pointQmay cause all three of the lower
particles to move. The motion of the particles are described by the velocities, which are functions of the generalized
speeds. Thus F̄ will, in general, cause all of the generalized speeds to change. But how much does each generalized
speed change? The so called partial velocites of Q in N will provide the answer to this question.

Fig. 15.1: Four particles attached by massless links making up a 3 link planar simple pendulum. The top particle is fixed
in N . If the generalized coordinates q1, q2, q3 represent the angles of the three pendulums then three generalized speeds
could be defined as ui = q̇i for i = 1, . . . , 3.

190 Chapter 15. Generalized Forces

https://en.wikipedia.org/wiki/Newton%E2%80%93Euler_equations

Learn Multibody Dynamics

15.3 Partial Velocities

Recall that all translational and angular velocities of a multibody system can be written in terms of the generalized speeds.
By definition (Eq. (12.21)), these velocities can be expressed uniquely as linear functions of the generalized speeds.
For a holonomic system with n degrees of freedom any translational velocity or angular velocity observed from a single
reference frame can be written as ([Kane1985], pg. 45):

v̄ =

n∑
r=1

v̄rur + v̄t

ω̄ =

n∑
r=1

ω̄rur + ω̄t

(15.2)

We call v̄r and ω̄r the rth holonomic partial velocity and angular velocity in the single reference frame, respectively. v̄t
and ω̄t are the remainder terms that are not linear in a generalized speed. Since the velocities are linear in the generalized
speeds, the partial velocities are equal to the partial derivatives with respect to the generalized speeds:

v̄r =
∂v̄

∂ur

ω̄r =
∂ω̄

∂ur

(15.3)

Note: The reference frame these partials are taken with respect to must match that which the velocities are with respect
to.

Given that the partial velocities are partial derivatives, means that we may interpret the partial velocities as the sensitivities
of translational and angular velocities to changes in ur. The partial velocities give an idea of how any given velocity or
angular velocity will change if one of the generalized speeds changes. Figure Fig. 15.2 gives a graphical interpretation of
how a velocity of P in N is made up of partial velocities and a remainder.

Fig. 15.2: Velocity vector N v̄P of point P shown expressed as a sum of linear combinations of generalized speeds and
partial velocity vectors and a remainder vector. In this case there are two generalized speeds.

Partial velocities can be determined by inspection of velocity vector expressions or calculated by taking the appropriate
partial derivatives. Take, for example, the single body system shown in Fig. 15.3. What are the partial velocities for N v̄A,
N v̄B , and N ω̄R?

15.3. Partial Velocities 191

Learn Multibody Dynamics

Fig. 15.3: A rod R pinned at A on the horizontal line. A’s horizontal translation is described by with the generalized
coordinate q1 and the angle of the rod relative to the horizontal is described by the generalized coordinate q2.

First calculate the velocities and ensure they are only in terms of the generalized speeds and generalized coordinates. In
this case, we have chosen u1 = q̇1 and u2 = q̇2.

L = sm.symbols('L')
q1, q2, u1, u2 = me.dynamicsymbols('q1, q2, u1, u2')

N = me.ReferenceFrame('N')
R = me.ReferenceFrame('R')

R.orient_axis(N, q2, N.z)

N_v_A = u1*N.x
N_v_A

u1n̂x (15.4)

N_w_R = u2*N.z
N_w_R

u2n̂z (15.5)

r_A_B = -L*R.x
N_v_B = N_v_A + me.cross(N_w_R, r_A_B)

N_v_B.express(N)

(Lu2 sin (q2) + u1)n̂x − Lu2 cos (q2)n̂y (15.6)

192 Chapter 15. Generalized Forces

Learn Multibody Dynamics

Now, take the partial derivatives with respect to the generalized speeds to find the six partial velocities. The sensitivity
of point A’s linear motion is only a function of the first generalized speed, i.e. change in u1 will cause accelerations in
the n̂x direction.

v_A_1 = N_v_A.diff(u1, N)
v_A_2 = N_v_A.diff(u2, N)

v_A_1, v_A_2

(n̂x, 0) (15.7)

The sensitivity of point B’s linear motion is a function of both generalized speeds, showing that acceleration in the n̂x
direction is caused by change in both generalized speeds. In the n̂y direction motion change is only caused by change in
u2.

v_B_1 = N_v_B.diff(u1, N)
v_B_2 = N_v_B.diff(u2, N)

v_B_1, v_B_2

(n̂x, −Lr̂y) (15.8)

Lastly, the sensitivity of the bodyR’s angular velocity to the two generalized speeds is only from u2 in the n̂z direction.

w_R_1 = N_w_R.diff(u1, N)
w_R_2 = N_w_R.diff(u2, N)

w_R_1, w_R_2

(0, n̂z) (15.9)

SymPy Mechanics provides a convenience function partial_velocity() to calculate a set of partial velocities
for a set of generalized speeds:

me.partial_velocity((N_v_A, N_v_B, N_w_R), (u1, u2), N)

[[n̂x, 0] , [n̂x, −Lr̂y] , [0, n̂z]] (15.10)

15.4 Nonholonomic Partial Velocities

If a system is nonholonomic, it is also true that every translational and angular velocity can be expressed uniquely in terms
of the p independent generalized speeds (see Eq. (12.58)). Thus, we can also define the nonholonomic partial velocities

15.4. Nonholonomic Partial Velocities 193

https://docs.sympy.org/latest/modules/physics/vector/api/kinematics.html#sympy.physics.vector.functions.partial_velocity

Learn Multibody Dynamics

ṽr and nonholonomic partial angular velocities ω̃r as per ([Kane1985], pg. 46):

v̄ =

p∑
r=1

ṽrur + ṽt

ω̄ =

p∑
r=1

ω̃rur + ω̃t

(15.11)

If you have found the n holonomic partial velocities, then you can use An from (12.58) to find the nonholonomic partial
velocities with:

ṽr =v̄r + [v̄p+1 . . . v̄n]Anêr
ω̃r =ω̄r + [ω̄p+1 . . . ω̄n]Anêr for r = 1 . . . p

(15.12)

where êr is a unit vector in the independent speed ūs vector space, e.g. ê2 = [0, 1, 0, 0]
T if p = 4. See [Kane1985] pg.

48 for more explanation.

15.5 Generalized Active Forces

Suppose we have a holonomic multibody system made up of ν particles with n degrees of freedom in a reference frame
A that are described by generalized speeds u1, . . . , un. Each particle may have a resultant force R̄ applied to it. By
projecting each of the forces onto the partial velocity of its associated particle and summing the projections, we arrive at
the total scalar force contribution associated with changes in that generalized speed. We call these scalar values, one for
each generalized speed, the generalized active forces. The rth holonomic generalized active force for this system in A is
defined as ([Kane1985], pg. 99):

Fr :=

ν∑
i=1

Av̄Pi
r · R̄i (15.13)

where i represents the ith particle.
Notice that the rth generalized active force is:

1. a scalar value
2. has contributions from all particles except if Av̄Pi ⊥ R̄i

3. associated with the rth generalized speed
We will typically collect all of the generalized active forces in a column vector to allow for matrix operations with these
values:

F̄r =

∑ν
i=1

Av̄Pi
1 · R̄i

...∑ν
i=1

Av̄Pi
r · R̄i

...∑ν
i=1

Av̄Pi
n · R̄i

 (15.14)

Eq. (15.13) shows that the partial velocities transform the forces applied to the multibody system from their Cartesian
vector space to a new generalized speed vector space.
Now let us calculate the generalized active forces for a simple multibody system made up of only particles. Fig. 15.4
shows a double simple pendulum made up of two particles P1 and P2 with massesm1 andm2 respectively.
To calculate the generalized active forces we first find the velocities of each particle and write them in terms of the
generalized speeds which we define as u1 = q̇1, u2 = q̇2.

194 Chapter 15. Generalized Forces

Learn Multibody Dynamics

Fig. 15.4: Double simple pendulum a) kinematic schematic, b) free body diagram of P1, c) free body diagram of P2.

l = sm.symbols('l')
q1, q2, u1, u2 = me.dynamicsymbols('q1, q2, u1, u2')

N = me.ReferenceFrame('N')
A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')

A.orient_axis(N, q1, N.z)
B.orient_axis(N, q2, N.z)

O = me.Point('O')
P1 = me.Point('P1')
P2 = me.Point('P2')

O.set_vel(N, 0)

P1.set_pos(O, -l*A.y)
P2.set_pos(P1, -l*B.y)

P1.v2pt_theory(O, N, A)
P2.v2pt_theory(P1, N, B)

P1.vel(N), P2.vel(N)

(
lq̇1âx, lq̇1âx + lq̇2b̂x

)
(15.15)

repl = {q1.diff(): u1, q2.diff(): u2}

N_v_P1 = P1.vel(N).xreplace(repl)
N_v_P2 = P2.vel(N).xreplace(repl)

N_v_P1, N_v_P2

(
lu1âx, lu1âx + lu2b̂x

)
(15.16)

We will need the partial velocities of each particle with respect to the two generalized speeds, giving four partial
velocities:

15.5. Generalized Active Forces 195

Learn Multibody Dynamics

v_P1_1 = N_v_P1.diff(u1, N)
v_P1_2 = N_v_P1.diff(u2, N)
v_P2_1 = N_v_P2.diff(u1, N)
v_P2_2 = N_v_P2.diff(u2, N)
v_P1_1, v_P1_2, v_P2_1, v_P2_2

(
lâx, 0, lâx, lb̂x

)
(15.17)

To determine the resultant forces acting on each particle we isolate each particle from the system and draw a free body
diagram with all of the forces acting on the particle. Each particle has a gravitational force as well as distance, or tension,
forces that ensure the particle stays connected to the massless rod. The resultant forces on each particle are then:

T1, T2 = me.dynamicsymbols('T1, T2')
m1, m2, g = sm.symbols('m1, m2, g')

R1 = -m1*g*N.y + T1*A.y - T2*B.y
R1

−gm1n̂y + T1ây − T2b̂y (15.18)

R2 = -m2*g*N.y + T2*B.y
R2

−gm2n̂y + T2b̂y (15.19)

With the resultants and the partial velocities defined, the two generalized active forces can then be found:

F1 = me.dot(v_P1_1, R1) + me.dot(v_P2_1, R2)
F1

−glm1 sin (q1)− glm2 sin (q1) (15.20)

F2 = me.dot(v_P1_2, R1) + me.dot(v_P2_2, R2)
F2

−glm2 sin (q2) (15.21)

Notice that the distance forces T1, T2 are not present in the generalized active forcesF1 orF2. This is not by coincidence,
but will always be true for noncontributing forces. They are in fact named “noncontributing” because they do not contribute
to the generalized active forces (nor the full equations of motion we eventually arrive at). Noncontributing forces need
not be considered in the resultants, in general, and we will not include them in further examples.
Notice also that these generalized forces have units of force× length. This is because our generalized speeds are angular
rates. If our generalized speeds were linear rates, the generalized forces would have units of force.

196 Chapter 15. Generalized Forces

Learn Multibody Dynamics

15.6 Generalized Active Forces on a Rigid Body

If a holonomic multibody system with n degrees of freedom in reference frame A includes a rigid body B then the loads
acting on B can be described by a resultant force R̄ bound to line through an arbitrary point Q in B and a couple with
torque T̄ . The generalized active force in A for a single rigid body in a multibody system is then defined as ([Kane1985],
pg. 106):

(Fr)B := Av̄Qr · R̄+ Aω̄Br · T̄ (15.22)

A generalized active force for each rigid body and particle in a system must be summed to obtain the total generalized
active force.
To demonstrate finding the generalized active forces for a multibody systemwith two rigid bodies consider Fig. 15.5 which
shows two thin rods of length l that are connected at points O and Bo.

Fig. 15.5: A multibody system comprised of two uniformly dense thin rods of length l and massm. Rod A is pinned at
O and can rotate about n̂z through q1. Rod B is pinned to A and can rotate relative to A about âx through q2. Linear
torisional springs of stiffnes k with a free length of zero resists each relative rotation. Gravitational forces are in the n̂x
direction.

The first step is to define the necessary velocities we’ll need: translational velocities of the twomass centers and the angular
velocities of each body. We use the simple definition of the generalized speeds ui = q̇i.

m, g, k, l = sm.symbols('m, g, k, l')
q1, q2, u1, u2 = me.dynamicsymbols('q1, q2, u1, u2')

N = me.ReferenceFrame('N')
A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')

A.orient_axis(N, q1, N.z)
B.orient_axis(A, q2, A.x)

A.set_ang_vel(N, u1*N.z)
B.set_ang_vel(A, u2*A.x)

O = me.Point('O')
Ao = me.Point('A_O')
Bo = me.Point('B_O')

(continues on next page)

15.6. Generalized Active Forces on a Rigid Body 197

Learn Multibody Dynamics

(continued from previous page)

Ao.set_pos(O, l/2*A.x)
Bo.set_pos(O, l*A.x)

O.set_vel(N, 0)
Ao.v2pt_theory(O, N, A)
Bo.v2pt_theory(O, N, A)

Ao.vel(N), Bo.vel(N), A.ang_vel_in(N), B.ang_vel_in(N)

(
lu1
2
ây, lu1ây, u1n̂z, u2âx + u1n̂z

)
(15.23)

Now determine the holonomic partial velocities in N :

v_Ao_1 = Ao.vel(N).diff(u1, N)
v_Ao_2 = Ao.vel(N).diff(u2, N)
v_Bo_1 = Bo.vel(N).diff(u1, N)
v_Bo_2 = Bo.vel(N).diff(u2, N)

v_Ao_1, v_Ao_2, v_Bo_1, v_Bo_2

(
l

2
ây, 0, lây, 0

)
(15.24)

and the holonomic partial angular velocities in N :

w_A_1 = A.ang_vel_in(N).diff(u1, N)
w_A_2 = A.ang_vel_in(N).diff(u2, N)
w_B_1 = B.ang_vel_in(N).diff(u1, N)
w_B_2 = B.ang_vel_in(N).diff(u2, N)

w_A_1, w_A_2, w_B_1, w_B_2

(n̂z, 0, n̂z, âx) (15.25)

The resultant forces on the two bodies are simply the gravitational forces that act at each mass center (we ignore the
noncontributing pin joint contact forces):

R_Ao = m*g*N.x
R_Bo = m*g*N.x

R_Ao, R_Bo

(gmn̂x, gmn̂x) (15.26)

With linear torsion springs between frames A and N and frames A and B the torques acting on each body are:

198 Chapter 15. Generalized Forces

Learn Multibody Dynamics

T_A = -k*q1*N.z + k*q2*A.x
T_B = -k*q2*A.x

T_A, T_B

(−kq1n̂z + kq2âx, −kq2âx) (15.27)

Note that kq2âx in T̄A is the reaction torque of body B on A via the torsional spring.
Now, a generalized active force component can be found for each body and each generalized speed using (15.22):

F1_A = v_Ao_1.dot(R_Ao) + w_A_1.dot(T_A)
F1_B = v_Bo_1.dot(R_Bo) + w_B_1.dot(T_B)
F2_A = v_Ao_2.dot(R_Ao) + w_A_2.dot(T_A)
F2_B = v_Bo_2.dot(R_Bo) + w_B_2.dot(T_B)

F1_A, F1_B, F2_A, F2_B

(
−glm sin (q1)

2
− kq1, −glm sin (q1), 0, −kq2

)
(15.28)

Summing for each generalized speed and then stacking the two scalars in a column vector gives the generalized active
forces for the system:

F1 = F1_A + F1_B
F2 = F2_A + F2_B

Fr = sm.Matrix([F1, F2])
Fr

[
− 3glm sin (q1)

2 − kq1
−kq2

]
(15.29)

15.7 Nonholonomic Generalized Active Forces

For a nonholonomic system with p degrees of freedom in reference frameA, the p generalized active forces can be formed
instead. The nonholonomic generalized active force contributions from a particle P and rigid body B are:

(F̃r)P = AṽP · R̄
(F̃r)B = AṽQ · R̄+ Aω̃B · T̄

(15.30)

As a corollary to (15.12), if the holonomic generalized active forces are known and nonholonomic constraints are intro-
duced the nonholonomic generalized active forces can be found with

F̃r = Fr + [Fp+1 . . . Fn]Anêr for r = 1 . . . p (15.31)

where [Fp+1 . . . Fn] are the m holonomic generalized active forces associated with the dependent generalized speeds.
See [Kane1985] pg. 99 for more information.

15.7. Nonholonomic Generalized Active Forces 199

Learn Multibody Dynamics

15.8 Generalized Inertia Forces

Analogous to the generalized active forces and their relationship to the left hand side of the Newtwon-Euler equations
(Eq. (15.1), generalized inertia forces map the right hand side of the Newton-Euler equations, time derivatives of linear
and angular momentum, to the vector space of the generalized speeds for a multibody system. For a holonomic multibody
system in A made up of a set of ν particles the rth generalized inertia force is defined as ([Kane1985], pg. 124):

F ∗
r :=

ν∑
i=1

Av̄Pi
r · R̄∗

i (15.32)

where the resultant inertia force on the ith particle is:

R̄∗
i := −mi

AāPi
i (15.33)

The generalized inertia force for a single rigid body B with massmB , mass center Bo, and central inertia dyadic ĬB/Bo

is defined as:

(F ∗
r)B := Av̄Bo

r · R̄∗ + Aω̄Br · T̄ ∗ (15.34)

where the inertia force on the body is:

R̄∗ := −mB
AāBo (15.35)

and the inertia torque on the body are

T̄ ∗ := −
(
AᾱB · ĬB/Bo + Aω̄B × ĬB/Bo · Aω̄B

)
(15.36)

Coming back to the system in Fig. 15.5 we can now calculate the generalized inertia forces for the two rigid body system.
First, the velocities and partial velocities are found as before:

m, g, k, l = sm.symbols('m, g, k, l')
q1, q2, u1, u2 = me.dynamicsymbols('q1, q2, u1, u2')

N = me.ReferenceFrame('N')
A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')

A.orient_axis(N, q1, N.z)
B.orient_axis(A, q2, A.x)

A.set_ang_vel(N, u1*N.z)
B.set_ang_vel(A, u2*A.x)

O = me.Point('O')
Ao = me.Point('A_O')
Bo = me.Point('B_O')

Ao.set_pos(O, l/2*A.x)
Bo.set_pos(O, l*A.x)

O.set_vel(N, 0)
Ao.v2pt_theory(O, N, A)
Bo.v2pt_theory(O, N, A)

v_Ao_1 = Ao.vel(N).diff(u1, N)

(continues on next page)

200 Chapter 15. Generalized Forces

Learn Multibody Dynamics

(continued from previous page)
v_Ao_2 = Ao.vel(N).diff(u2, N)
v_Bo_1 = Bo.vel(N).diff(u1, N)
v_Bo_2 = Bo.vel(N).diff(u2, N)

w_A_1 = A.ang_vel_in(N).diff(u1, N)
w_A_2 = A.ang_vel_in(N).diff(u2, N)
w_B_1 = B.ang_vel_in(N).diff(u1, N)
w_B_2 = B.ang_vel_in(N).diff(u2, N)

We will need the translational accelerations of the mass centers and the angular accelerations of each body expressed in
terms of the generalized speeds, their derivatives, and the generalized coordinates:

Ao.acc(N), Bo.acc(N)

(
− lu

2
1

2
âx +

lu̇1
2
ây, −lu21âx + lu̇1ây

)
(15.37)

A.ang_acc_in(N), B.ang_acc_in(N)

(u̇1n̂z, u̇2âx + u1u2ây + u̇1n̂z) (15.38)

The central moment of inertia of a thin uniformly dense rod of massm and length L about any axis normal to its length
is:

I = m*l**2/12
I

l2m

12
(15.39)

This can be used to formulate the central inertia dyadics of each rod:

I_A_Ao = I*me.outer(A.y, A.y) + I*me.outer(A.z, A.z)
I_B_Bo = I*me.outer(B.x, B.x) + I*me.outer(B.z, B.z)
I_A_Ao, I_B_Bo

(
l2m

12
ây ⊗ ây +

l2m

12
âz ⊗ âz,

l2m

12
b̂x ⊗ b̂x +

l2m

12
b̂z ⊗ b̂z

)
(15.40)

The resultant inertia forces acting at the mass center of each body are:

Rs_Ao = -m*Ao.acc(N)
Rs_Bo = -m*Bo.acc(N)

Rs_Ao, Rs_Bo

(
lmu21
2

âx −
lmu̇1
2

ây, lmu
2
1âx − lmu̇1ây

)
(15.41)

And the inertia torques acting on each body are:

15.8. Generalized Inertia Forces 201

Learn Multibody Dynamics

Ts_A = -(A.ang_acc_in(N).dot(I_A_Ao) +
me.cross(A.ang_vel_in(N), I_A_Ao).dot(A.ang_vel_in(N)))

Ts_A

− l
2mu̇1
12

âz (15.42)

Ts_B = -(B.ang_acc_in(N).dot(I_B_Bo) +
me.cross(B.ang_vel_in(N), I_B_Bo).dot(B.ang_vel_in(N)))

Ts_B

(− l
2mu21 sin (q2) cos (q2)

12
− l2mu̇2

12
)b̂x + (− l

2m (−u1u2 sin (q2) + cos (q2)u̇1)
12

+
l2mu1u2 sin (q2)

12
)b̂z (15.43)

Now the generalized inertia forces can be formed by projecting the inertia force and inertia torque onto the partial
velocities:

F1s_A = v_Ao_1.dot(Rs_Ao) + w_A_1.dot(Ts_A)
F1s_B = v_Bo_1.dot(Rs_Bo) + w_B_1.dot(Ts_B)
F2s_A = v_Ao_2.dot(Rs_Ao) + w_A_2.dot(Ts_A)
F2s_B = v_Bo_2.dot(Rs_Bo) + w_B_2.dot(Ts_B)

We then sum for each generalized speed and then stack them in a column vector F̄ ∗
r :

F1s = F1s_A + F1s_B
F2s = F2s_A + F2s_B

Frs = sm.Matrix([F1s, F2s])
Frs

[
− 4l2mu̇1

3 +
(
− l2m(−u1u2 sin (q2)+cos (q2)u̇1)

12 + l2mu1u2 sin (q2)
12

)
cos (q2)

− l2mu2
1 sin (q2) cos (q2)

12 − l2mu̇2

12

]
(15.44)

15.9 Nonholonomic Generalized Inertia Forces

For a nonholonomic system with p degrees of freedom in reference frameA, the p generalized active forces can be formed
instead. The nonholonomic generalized active force contributions from a particle P and rigid body B are:

(F̃ ∗
r)P = AṽP · R̄∗

(F̃ ∗
r)B = AṽQ · R̄∗ + Aω̃B · T̄ ∗ (15.45)

Similar to Eq. (15.31), the nonholonomic generalized inertia forces can be calculated from the holonomic generalized
inertia forces and An:

F̃ ∗
r = F ∗

r +
[
F ∗
p+1 . . . F

∗
n

]
Anêr for r = 1 . . . p (15.46)

More information about the relation between the nonholonomic and holonomic generalized inertia forces is give in
[Kane1985] pg. 124.

202 Chapter 15. Generalized Forces

CHAPTER

SIXTEEN

UNCONSTRAINED EQUATIONS OF MOTION

Note: You can download this example as a Python script: eom.py or Jupyter Notebook: eom.ipynb.

import sympy as sm
import sympy.physics.mechanics as me
me.init_vprinting(use_latex='mathjax')

class ReferenceFrame(me.ReferenceFrame):

def __init__(self, *args, **kwargs):

kwargs.pop('latexs', None)

lab = args[0].lower()
tex = r'\hat{{{}}}_{}'

super(ReferenceFrame, self).__init__(*args,
latexs=(tex.format(lab, 'x'),

tex.format(lab, 'y'),
tex.format(lab, 'z')),

**kwargs)
me.ReferenceFrame = ReferenceFrame

16.1 Learning Objectives

After completing this chapter readers will be able to:
• Form the dynamical differential equations for a multibody system where n = p.
• Calculate the dynamical differential equations of motion for a single rigid body.
• Form the equations of motion for a multibody system where n = p.
• Write the equations of motion in implicit and explicit forms.

203

Learn Multibody Dynamics

16.2 Dynamical Differential Equations

In the previous chapter, we introduced the generalized active forces F̄r and the generalized inertia forces F̄ ∗
r . Together,

these two forces give us the dynamical differential equations. The dynamical differential equations for a holonomic system
with p = n degrees of freedom in an inertial reference frame. They are a function of the generalized coordinates, the
generalized speeds, the time derivatives of the generalized speeds, and time. The dynamical differential equations take
this form:

F̄r + F̄ ∗
r = f̄d(˙̄u, ū, q̄, t) = 0 (16.1)

These are the Newton-Euler equations for a multibody system in the form presented in [Kane1985] pg. 158, thus we also
call these equations Kane’s Equations. The dynamical differential equations can only be formed when motion is viewed
from an inertial reference frame, because an inertial reference frame is one where Newton’s First Law holds, i.e. objects
at rest stay at rest unless an external force acts on them. An inertial reference frame is one that is not accelerating, or can
be assumed not to be with respect to the motion of the bodies of interest.
F̄ ∗
r is always linear in the time derivatives of the generalized speeds and contains velocity dependent terms such as the

centripetal and Coriolis forces and the rotational velocity coupling terms. These forces are sometimes called fictitious
forces. F̄r are contributing forces due to body and environment interactions. Texts about dynamics will often present the
dynamical differential equations in this form:

−F̄ ∗
r = F̄r → M(q̄, t) ˙̄u+ C̄(ū, q̄, t) = F̄ (ū, q̄, t) (16.2)

where M is called the mass matrix, C̄ is are the forces due to the various velocity effects, and F̄ are the contributing
externally applied forces.

16.3 Body Fixed Newton-Euler Equations

To show that Kane’s Equations are equivalent to the Newton-Euler equations you may have seen before, we can find the
dynamical differential equations for a single rigid body using Kane’s method and then show the results in the canonical
form. For a rigid bodyB moving in an inertial reference frameA with its velocity and angular velocity expressed in body
fixed coordinates and acted upon by a resultant force F̄ at the mass center Bo and a moment about the mass center M̄
we need these variables, reference frames, and points:

m, Ixx, Iyy, Izz = sm.symbols('m, I_{xx}, I_{yy}, I_{zz}')
Ixy, Iyz, Ixz = sm.symbols('I_{xy}, I_{yz}, I_{xz}')
Fx, Fy, Fz, Mx, My, Mz = me.dynamicsymbols('F_x, F_y, F_z, M_x, M_y, M_z')
u1, u2, u3, u4, u5, u6 = me.dynamicsymbols('u1, u2, u3, u4, u5, u6')

A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')

Bo = me.Point('Bo')

Now define the angular velocity of the body and the velocity of the mass center in terms of six generalized coordinates
expressed in body fixed coordinates.

A_w_B = u4*B.x + u5*B.y + u6*B.z
B.set_ang_vel(A, A_w_B)

A_v_Bo = u1*B.x + u2*B.y + u3*B.z
Bo.set_vel(A, A_v_Bo)

204 Chapter 16. Unconstrained Equations of Motion

https://en.wikipedia.org/wiki/Newton%E2%80%93Euler_equations
https://en.wikipedia.org/wiki/Inertial_frame_of_reference
https://en.wikipedia.org/wiki/Fictitious_force
https://en.wikipedia.org/wiki/Fictitious_force

Learn Multibody Dynamics

Now we can find the six partial velocities and partial angular velocities. Note that we use the var_in_dcm=False
keyword argument. We do this because the generalized speeds are not present in the unspecified direction cosine matrix
relating A and B. This allows the derivative in A to be formed without use of a direction cosine matrix. Generalized
speeds will never be present in a direction cosine matrix.

v_Bo_1 = A_v_Bo.diff(u1, A, var_in_dcm=False)
v_Bo_2 = A_v_Bo.diff(u2, A, var_in_dcm=False)
v_Bo_3 = A_v_Bo.diff(u3, A, var_in_dcm=False)
v_Bo_4 = A_v_Bo.diff(u4, A, var_in_dcm=False)
v_Bo_5 = A_v_Bo.diff(u5, A, var_in_dcm=False)
v_Bo_6 = A_v_Bo.diff(u6, A, var_in_dcm=False)

v_Bo_1, v_Bo_2, v_Bo_3, v_Bo_4, v_Bo_5, v_Bo_6

(
b̂x, b̂y, b̂z, 0, 0, 0

)
(16.3)

w_B_1 = A_w_B.diff(u1, A, var_in_dcm=False)
w_B_2 = A_w_B.diff(u2, A, var_in_dcm=False)
w_B_3 = A_w_B.diff(u3, A, var_in_dcm=False)
w_B_4 = A_w_B.diff(u4, A, var_in_dcm=False)
w_B_5 = A_w_B.diff(u5, A, var_in_dcm=False)
w_B_6 = A_w_B.diff(u6, A, var_in_dcm=False)

w_B_1, w_B_2, w_B_3, w_B_4, w_B_5, w_B_6

(
0, 0, 0, b̂x, b̂y, b̂z

)
(16.4)

The partial_velocity() function does this same thing. Notice that due to our velocity definitions, we get a very
simple set of partial velocities.

par_vels = me.partial_velocity([A_v_Bo, A_w_B], [u1, u2, u3, u4, u5, u6], A)

par_vels

[[
b̂x, b̂y, b̂z, 0, 0, 0

]
,
[
0, 0, 0, b̂x, b̂y, b̂z

]]
(16.5)

Now form the generalized active forces:

T = Mx*B.x + My*B.y + Mz*B.z
R = Fx*B.x + Fy*B.y + Fz*B.z

F1 = v_Bo_1.dot(R) + w_B_1.dot(T)
F2 = v_Bo_2.dot(R) + w_B_2.dot(T)
F3 = v_Bo_3.dot(R) + w_B_3.dot(T)
F4 = v_Bo_4.dot(R) + w_B_4.dot(T)
F5 = v_Bo_5.dot(R) + w_B_5.dot(T)
F6 = v_Bo_6.dot(R) + w_B_6.dot(T)

Fr = sm.Matrix([F1, F2, F3, F4, F4, F6])
Fr

16.3. Body Fixed Newton-Euler Equations 205

Learn Multibody Dynamics

Fx
Fy
Fz
Mx

Mx

Mz

 (16.6)

and the generalized inertia forces:

I = me.inertia(B, Ixx, Iyy, Izz, Ixy, Iyz, Ixz)

Rs = -m*Bo.acc(A)
Ts = -(B.ang_acc_in(A).dot(I) + me.cross(A_w_B, I).dot(A_w_B))

F1s = v_Bo_1.dot(Rs) + w_B_1.dot(Ts)
F2s = v_Bo_2.dot(Rs) + w_B_2.dot(Ts)
F3s = v_Bo_3.dot(Rs) + w_B_3.dot(Ts)
F4s = v_Bo_4.dot(Rs) + w_B_4.dot(Ts)
F5s = v_Bo_5.dot(Rs) + w_B_5.dot(Ts)
F6s = v_Bo_6.dot(Rs) + w_B_6.dot(Ts)

Frs = sm.Matrix([F1s, F2s, F3s, F4s, F5s, F6s])
Frs

−m (−u2u6 + u3u5 + u̇1)
−m (u1u6 − u3u4 + u̇2)
−m (−u1u5 + u2u4 + u̇3)

−Ixxu̇4 − Ixyu̇5 − Ixzu̇6 − (−Ixyu6 + Ixzu5)u4 − (−Iyyu6 + Iyzu5)u5 − (−Iyzu6 + Izzu5)u6
−Ixyu̇4 − Iyyu̇5 − Iyzu̇6 − (Ixxu6 − Ixzu4)u4 − (Ixyu6 − Iyzu4)u5 − (Ixzu6 − Izzu4)u6

−Ixzu̇4 − Iyzu̇5 − Izzu̇6 − (−Ixxu5 + Ixyu4)u4 − (−Ixyu5 + Iyyu4)u5 − (−Ixzu5 + Iyzu4)u6

 (16.7)

and finally Kane’s Equations:

Fr + Frs

−m (−u2u6 + u3u5 + u̇1) + Fx
−m (u1u6 − u3u4 + u̇2) + Fy
−m (−u1u5 + u2u4 + u̇3) + Fz

−Ixxu̇4 − Ixyu̇5 − Ixzu̇6 − (−Ixyu6 + Ixzu5)u4 − (−Iyyu6 + Iyzu5)u5 − (−Iyzu6 + Izzu5)u6 +Mx

−Ixyu̇4 − Iyyu̇5 − Iyzu̇6 − (Ixxu6 − Ixzu4)u4 − (Ixyu6 − Iyzu4)u5 − (Ixzu6 − Izzu4)u6 +Mx

−Ixzu̇4 − Iyzu̇5 − Izzu̇6 − (−Ixxu5 + Ixyu4)u4 − (−Ixyu5 + Iyyu4)u5 − (−Ixzu5 + Iyzu4)u6 +Mz

(16.8)

We can put Kane’s Equations in canonical form (Eq. (16.2)) by extracting the mass matrix, which is the linear coefficient
matrix of ˙̄u:

u = sm.Matrix([u1, u2, u3, u4, u5, u6])
t = me.dynamicsymbols._t
ud = u.diff(t)

The mass matrix is:

206 Chapter 16. Unconstrained Equations of Motion

Learn Multibody Dynamics

M = -Frs.jacobian(ud)
M

m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ixx Ixy Ixz
0 0 0 Ixy Iyy Iyz
0 0 0 Ixz Iyz Izz

 (16.9)

The velocity forces vector is:

C = -Frs.xreplace({udi: 0 for udi in ud})
C

m (−u2u6 + u3u5)
m (u1u6 − u3u4)
m (−u1u5 + u2u4)

(−Ixyu6 + Ixzu5)u4 + (−Iyyu6 + Iyzu5)u5 + (−Iyzu6 + Izzu5)u6
(Ixxu6 − Ixzu4)u4 + (Ixyu6 − Iyzu4)u5 + (Ixzu6 − Izzu4)u6

(−Ixxu5 + Ixyu4)u4 + (−Ixyu5 + Iyyu4)u5 + (−Ixzu5 + Iyzu4)u6

 (16.10)

And the forcing vector is:

F = Fr
F

Fx
Fy
Fz
Mx

Mx

Mz

 (16.11)

This example may seem overly complicated when using Kane’s method, but it is a systematic method that works for any
number of rigid bodies and particles in a system.

16.4 Equations of Motion

The kinematical and dynamical differential equations constitute the equations of motion for a holonomicmultibody system.
These equations are ordinary differential equations in the generalized speeds and generalized coordinates.

f̄d(˙̄u, ū, q̄, t) = 0

f̄k(˙̄q, ū, q̄, t) = 0
(16.12)

and since they are both linear in ˙̄u and ˙̄q, respectively, they can be written in a combined form:[
Mk 0
0 Md

] [
˙̄q
˙̄u

]
+

[
ḡk(ū, q̄, t)
ḡd(ū, q̄, t)

]
=

[
0
0

]
(16.13)

16.4. Equations of Motion 207

Learn Multibody Dynamics

which we write as:

Mm ˙̄x+ ḡm = 0̄ (16.14)

where x̄ = [q̄ ū]T is called the state of the system and is comprised of the generalized coordinates and generalized
speeds.

16.5 Example of Kane’s Equations

Returning to the example from the previous chapter, I will add an additional particle of massm/4 at pointQ that can slide
along the rod B and is attached to point Bo via a linear translational spring with stiffness kl and located by generalized
coordinate q3. The torsional spring stiffness has been renamed to kt. See Fig. 16.1 for a visual description.

Fig. 16.1: Three dimensional pendulummade up of two pinned rods and a sliding mass on rodB. Each degree of freedom
is resisted by a linear spring. When the generalized coordinates are all zero, the two rods are perpendicular to each other.

The following code is reproduced from the prior chapter and gives the velocities and angular velocities ofAo, Bo, A, and
B in the inertial reference frame N .

m, g, kt, kl, l = sm.symbols('m, g, k_t, k_l, l')
q1, q2, q3 = me.dynamicsymbols('q1, q2, q3')
u1, u2, u3 = me.dynamicsymbols('u1, u2, u3')

N = me.ReferenceFrame('N')

(continues on next page)

208 Chapter 16. Unconstrained Equations of Motion

Learn Multibody Dynamics

(continued from previous page)
A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')

A.orient_axis(N, q1, N.z)
B.orient_axis(A, q2, A.x)

A.set_ang_vel(N, u1*N.z)
B.set_ang_vel(A, u2*A.x)

O = me.Point('O')
Ao = me.Point('A_O')
Bo = me.Point('B_O')

Ao.set_pos(O, l/2*A.x)
Bo.set_pos(O, l*A.x)

O.set_vel(N, 0)
Ao.v2pt_theory(O, N, A)
Bo.v2pt_theory(O, N, A)

Ao.vel(N), Bo.vel(N), A.ang_vel_in(N), B.ang_vel_in(N)

(
lu1
2
ây, lu1ây, u1n̂z, u2âx + u1n̂z

)
(16.15)

We now have the particle at Q so we need its velocity for its contribution to Fr and F ∗
r . Q is moving in B so the one

point velocity theorem can be used.

Q = me.Point('Q')
Q.set_pos(Bo, q3*B.y)
Q.set_vel(B, u3*B.y)
Q.v1pt_theory(Bo, N, B)

Q.vel(N)

−q3u1 cos (q2)b̂x + u3b̂y + q3u2b̂z + lu1ây (16.16)

We will also need the accelerations of the points and frames for the generalized inertia forces. For points Ao, Bo and
frames A and B these are nicely expressed in terms of ˙̄u, ū, q̄:

Ao.acc(N), Bo.acc(N), A.ang_acc_in(N), B.ang_acc_in(N)

(
− lu

2
1

2
âx +

lu̇1
2
ây, −lu21âx + lu̇1ây, u̇1n̂z, u̇2âx + u1u2ây + u̇1n̂z

)
(16.17)

but the acceleration of pointQ contains ˙̄q terms, so we need to eliminate those with the kinematical differential equations:

Q.acc(N)

(q3u1u2 sin (q2) + q3u1 sin (q2)q̇2 − q3 cos (q2)u̇1 − u1u3 cos (q2)− u1 cos (q2)q̇3)b̂x + (−q3u21 cos2 (q2)− q3u
2
2 + u̇3)b̂y + (q3u

2
1 sin (q2) cos (q2) + q3u̇2 + u2u3 + u2q̇3)b̂z − lu21âx + lu̇1ây

(16.18)

16.5. Example of Kane’s Equations 209

Learn Multibody Dynamics

t = me.dynamicsymbols._t

qdot_repl = {q1.diff(t): u1,
q2.diff(t): u2,
q3.diff(t): u3}

Q.set_acc(N, Q.acc(N).xreplace(qdot_repl))
Q.acc(N)

(2q3u1u2 sin (q2)− q3 cos (q2)u̇1 − 2u1u3 cos (q2))b̂x + (−q3u21 cos2 (q2)− q3u
2
2 + u̇3)b̂y + (q3u

2
1 sin (q2) cos (q2) + q3u̇2 + 2u2u3)b̂z − lu21âx + lu̇1ây

(16.19)

Warning: Be careful when making substitutions when expressions contain derivatives and double derivatives. The
order in which you make the substitutions matter and the printer that SymPy is using may not show you what you
think you are looking at. Take this expression:
expr = m*q1.diff(t, 2) + kt*q1.diff(t) + kl*q1
expr

klq1 + ktq̇1 +mq̈1 (16.20)

Let’s say you need to make these substitutions: q1 = q2
q1
, q̇1 = u1, q̈1 = u̇1. It may seem obvious that the

q̈1 substitution should be done before q1, but care may be needed to help the computer realize this. If the highest
derivatives are substituted first with successive calls to .xreplace() then you get:
expr1 = expr.xreplace({q1.diff(t, 2): u1.diff(t)}).xreplace({q1.diff(t): u1}).
↪→xreplace({q1: q2/q1})
expr1

klq2
q1

+ ktu1 +mu̇1 (16.21)

But if you substitute in the opposite order you get:
expr2 = expr.xreplace({q1: q2/q1}).xreplace({q1.diff(t): u1}).xreplace({q1.diff(t,␣
↪→2): u1.diff(t)})
expr2

klq2
q1

+ kt

(
q̇2
q1

− q2q̇1
q21

)
+m

−

(
q̈1−

2q̇21
q1

)
q2

q1
+ q̈2 − 2q̇1q̇2

q1

q1

 (16.22)

which is a very different answer.
Checking the str() or srepr() versions of the expressions can help diagnose what is going on. The string repre-
sentation of the first expression is as expected:
print(expr1)

k_l*q2(t)/q1(t) + k_t*u1(t) + m*Derivative(u1(t), t)

210 Chapter 16. Unconstrained Equations of Motion

Learn Multibody Dynamics

The string representation of the second expression shows that the q1 symbol was substituted into each derivative term.
print(expr2)

k_l*q2(t)/q1(t) + k_t*Derivative(q2(t)/q1(t), t) + m*Derivative(q2(t)/q1(t), (t, 2))

expr2 shows different results depending on how you print it! The typeset math evaluates the derivatives and the
string representation does not.
If you put all of the substitutions in the same dictionary, SymPy should substitute the terms in the expected order:
expr.xreplace({q1: q2/q1, q1.diff(t): u1, q1.diff(t, 2): u1.diff(t)})

klq2
q1

+ ktu1 +mu̇1 (16.23)

expr.xreplace({q1.diff(t, 2): u1.diff(t), q1.diff(t): u1, q1: q2/q1})

klq2
q1

+ ktu1 +mu̇1 (16.24)

Now we formulate the resultant forces and torques on each relevant point and frame:

R_Ao = m*g*N.x
R_Bo = m*g*N.x + kl*q3*B.y
R_Q = m/4*g*N.x - kl*q3*B.y
T_A = -kt*q1*N.z + kt*q2*A.x
T_B = -kt*q2*A.x

Note the equal and opposite spring forces that act on the pairs of points and pairs of reference frames. We ignored the
reaction torque on N from A because N is our inertial reference frame.
The inertia dyadics of the two rods are:

I = m*l**2/12
I_A_Ao = I*me.outer(A.y, A.y) + I*me.outer(A.z, A.z)
I_B_Bo = I*me.outer(B.x, B.x) + I*me.outer(B.z, B.z)

To form the equations of motion, start by finding all of the partial velocities of the two mass centers Ao, Bo, one particle
Q, and two bodies A,B:

v_Ao_1 = Ao.vel(N).diff(u1, N)
v_Bo_1 = Bo.vel(N).diff(u1, N)
v_Q_1 = Q.vel(N).diff(u1, N)

v_Ao_2 = Ao.vel(N).diff(u2, N)
v_Bo_2 = Bo.vel(N).diff(u2, N)
v_Q_2 = Q.vel(N).diff(u2, N)

v_Ao_3 = Ao.vel(N).diff(u3, N)
v_Bo_3 = Bo.vel(N).diff(u3, N)
v_Q_3 = Q.vel(N).diff(u3, N)

(continues on next page)

16.5. Example of Kane’s Equations 211

Learn Multibody Dynamics

(continued from previous page)
w_A_1 = A.ang_vel_in(N).diff(u1, N)
w_B_1 = B.ang_vel_in(N).diff(u1, N)

w_A_2 = A.ang_vel_in(N).diff(u2, N)
w_B_2 = B.ang_vel_in(N).diff(u2, N)

w_A_3 = A.ang_vel_in(N).diff(u3, N)
w_B_3 = B.ang_vel_in(N).diff(u3, N)

The three generalized active forces are then formed by dotting the partial velocities with the associated load:

F1 = v_Ao_1.dot(R_Ao) + v_Bo_1.dot(R_Bo) + v_Q_1.dot(R_Q) + w_A_1.dot(T_A) + w_B_1.
↪→dot(T_B)
F2 = v_Ao_2.dot(R_Ao) + v_Bo_2.dot(R_Bo) + v_Q_2.dot(R_Q) + w_A_2.dot(T_A) + w_B_2.
↪→dot(T_B)
F3 = v_Ao_3.dot(R_Ao) + v_Bo_3.dot(R_Bo) + v_Q_3.dot(R_Q) + w_A_3.dot(T_A) + w_B_3.
↪→dot(T_B)

The generalized force vector F̄r is then:

Fr = sm.Matrix([F1, F2, F3])
Fr

−
7glm sin (q1)

4 − gmq3 cos (q1) cos (q2)
4 − ktq1

gmq3 sin (q1) sin (q2)
4 − ktq2

− gm sin (q1) cos (q2)
4 − klq3

 (16.25)

The three generalized inertia forces are similarly formed but with the resultant inertial forces:

TAs = -(A.ang_acc_in(N).dot(I_A_Ao) + me.cross(A.ang_vel_in(N), I_A_Ao).dot(A.ang_vel_
↪→in(N)))
TBs = -(B.ang_acc_in(N).dot(I_B_Bo) + me.cross(B.ang_vel_in(N), I_B_Bo).dot(B.ang_vel_
↪→in(N)))

F1s = v_Ao_1.dot(-m*Ao.acc(N)) + v_Bo_1.dot(-m*Bo.acc(N)) + v_Q_1.dot(-m/4*Q.acc(N))
F1s += w_A_1.dot(TAs) + w_B_1.dot(TBs)

F2s = v_Ao_2.dot(-m*Ao.acc(N)) + v_Bo_2.dot(-m*Bo.acc(N)) + v_Q_2.dot(-m/4*Q.acc(N))
F2s += w_A_2.dot(TAs) + w_B_2.dot(TBs)

F3s = v_Ao_3.dot(-m*Ao.acc(N)) + v_Bo_3.dot(-m*Bo.acc(N)) + v_Q_3.dot(-m/4*Q.acc(N))
F3s += w_A_3.dot(TAs) + w_B_3.dot(TBs)

Finally the generalized inertia force vector is:

Frs = sm.Matrix([F1s, F2s, F3s])
Frs

− 19l2mu̇1

12 − lmq3u
2
1 cos (q2)
4 + l

(
−m(−q3u2

1 cos2 (q2)−q3u2
2+u̇3) cos (q2)

4 +
m(q3u2

1 sin (q2) cos (q2)+q3u̇2+2u2u3) sin (q2)
4

)
+ m(2q3u1u2 sin (q2)−q3 cos (q2)u̇1−2u1u3 cos (q2))q3 cos (q2)

4 +
(
− l2m(−u1u2 sin (q2)+cos (q2)u̇1)

12 + l2mu1u2 sin (q2)
12

)
cos (q2)

− l2mu2
1 sin (q2) cos (q2)

12 − l2mu̇2

12 + lmq3 sin (q2)u̇1

4 − m(q3u2
1 sin (q2) cos (q2)+q3u̇2+2u2u3)q3

4

− lm cos (q2)u̇1

4 − m(−q3u2
1 cos2 (q2)−q3u2

2+u̇3)
4

(16.26)

212 Chapter 16. Unconstrained Equations of Motion

Learn Multibody Dynamics

Notice that the dynamical differential equations are only functions of the time varying variables ˙̄u, ū, q̄:

me.find_dynamicsymbols(Fr)

{q1, q2, q3} (16.27)

me.find_dynamicsymbols(Frs)

{q2, q3, u1, u2, u3, u̇1, u̇2, u̇3} (16.28)

16.6 Implicit and Explicit Form

Eq. (16.14) is written in an implicit form, meaning that the derivatives are not explicitly solved for. The explicit form is
found by invertingMm:

˙̄x = −M−1
m ḡm = f̄m(x̄, t) (16.29)

To determine how the state changes over time, these explicit differential equations can be solved by integrating them with
respect to time:

x̄(t) =

∫ tf

t0

f̄m(x̄, t)dt (16.30)

f̄m is, in general, nonlinear in time, thus analytical solutions are impossible to find. To solve this integral we must
numerically integrate f̄m. To do so, it will be useful to extract the symbolic forms ofMk, ḡk,Md, and ḡd.
Our example problem has a simple definition of the kinematical differential equations:q̇1q̇2

q̇3

 =

u1u2
u3

 (16.31)

soMk is the identity matrix and need not be formed:

Mk ˙̄q + ḡk = 0 → −

1 0 0
0 1 0
0 0 1

q̇1q̇2
q̇3

+

u1u2
u3

 =

00
0

 (16.32)

But we will needMd to solve explicitly for ˙̄u. Recall that we can use the Jacobian to extract the linear coefficients of ˙̄u
and then find the terms that aren’t functions of ˙̄u by substitution (See Sec. Solving Linear Systems).
Form the column vector ˙̄u:

u = sm.Matrix([u1, u2, u3])
ud = u.diff(t)
ud

16.6. Implicit and Explicit Form 213

Learn Multibody Dynamics

u̇1u̇2
u̇3

 (16.33)

Extract the coefficients of ˙̄u:

Md = Frs.jacobian(ud)
Md

−
l2m cos2 (q2)

12 − 19l2m
12 − mq23 cos2 (q2)

4
lmq3 sin (q2)

4 − lm cos (q2)
4

lmq3 sin (q2)
4 − l2m

12 − mq23
4 0

− lm cos (q2)
4 0 −m

4

 (16.34)

Make a substitution dictionary to set ˙̄u = 0̄:

ud_zerod = {udr: 0 for udr in ud}
ud_zerod

{u̇1 : 0, u̇2 : 0, u̇3 : 0} (16.35)

Find ḡd with ḡd = F̄ ∗
r | ˙̄u=0̄ + F̄r:

gd = Frs.xreplace(ud_zerod) + Fr
gd

− 7glm sin (q1)

4 − gmq3 cos (q1) cos (q2)
4 − ktq1 +

l2mu1u2 sin (q2) cos (q2)
6 − lmq3u

2
1 cos (q2)
4 + l

(
−m(−q3u2

1 cos2 (q2)−q3u2
2) cos (q2)

4 +
m(q3u2

1 sin (q2) cos (q2)+2u2u3) sin (q2)
4

)
+ m(2q3u1u2 sin (q2)−2u1u3 cos (q2))q3 cos (q2)

4

gmq3 sin (q1) sin (q2)
4 − ktq2 − l2mu2

1 sin (q2) cos (q2)
12 − m(q3u2

1 sin (q2) cos (q2)+2u2u3)q3
4

− gm sin (q1) cos (q2)
4 − klq3 −

m(−q3u2
1 cos2 (q2)−q3u2

2)
4

(16.36)

Check that neither are functions of ˙̄u:

me.find_dynamicsymbols(Md)

{q2, q3} (16.37)

me.find_dynamicsymbols(gd)

{q1, q2, q3, u1, u2, u3} (16.38)

214 Chapter 16. Unconstrained Equations of Motion

CHAPTER

SEVENTEEN

SIMULATION AND VISUALIZATION

Note: You can download this example as a Python script: simulation.py or Jupyter Notebook: simulation.
ipynb.

import sympy as sm
import sympy.physics.mechanics as me
me.init_vprinting(use_latex='mathjax')

class ReferenceFrame(me.ReferenceFrame):

def __init__(self, *args, **kwargs):

kwargs.pop('latexs', None)

lab = args[0].lower()
tex = r'\hat{{{}}}_{}'

super(ReferenceFrame, self).__init__(*args,
latexs=(tex.format(lab, 'x'),

tex.format(lab, 'y'),
tex.format(lab, 'z')),

**kwargs)
me.ReferenceFrame = ReferenceFrame

17.1 Learning Objectives

After completing this chapter readers will be able to:
• evaluate equations of motion numerically
• numerically integrate the ordinary differential equations of a multibody system
• plot the system’s state trajectories versus time
• compare integration methods to observe integration error
• create a simple animation of the motion of the multibody system

215

Learn Multibody Dynamics

17.2 Numerical Integration

As mentioned at the end of the prior chapter, we will need to numerically integrate the equations of motion. If they are
in explicit form, this integral describes how we can arrive at trajectories in time for the state variables by integrating with
respect to time from an initial time t0 to a final time tf . Recall that the time derivative of the state x̄ is:

˙̄x(t) = f̄m(x̄, t) = −M−1
m ḡm (17.1)

We can then find x̄ by integration with respect to time:

x̄(t) =

∫ tf

t0

f̄m(x̄, t)dt (17.2)

It is possible to form −M−1
m ḡm symbolically and it may be suitable or preferable for a given problem, but there are some

possible drawbacks. For example, if the degrees of freedom are quite large, the resulting symbolic equations become
exponentially more complex. Thus, it is generally best to move from symbolics to numerics before formulating the explicit
ordinary differential equations.

17.3 Numerical Evaluation

The NumPy library is the de facto base library for numeric computing with Python. NumPy allows us to do array
programming with Python by providing floating point array data types and vectorized operators to enable repeat operations
across arrays of values. In Sec. Evaluating Symbolic Expressions we introduced the SymPy function lambdify().
lambdify() will be our way to bridge the symbolic world of SymPy with the numeric world of NumPy.
We will import NumPy like so, by convention:

import numpy as np

Warning: Beware that mixing SymPy and NumPy data types will rarely, if at all, provide you with functioning code.
Be careful because sometimes it may look like the two libraries mix. For example, you can do this:
a, b, c, d = sm.symbols('a, b, c, d')

mat = np.array([[a, b], [c, d]])
mat

array([[a, b],
[c, d]], dtype=object)

which gives a NumPy array containing SymPy symbols. But this will almost certainly cause you problems as you
move forward. The process you should always follow for the purposes of this text is:
sym_mat = sm.Matrix([[a, b], [c, d]])
eval_sym_mat = sm.lambdify((a, b, c, d), sym_mat)
num_mat = eval_sym_mat(1.0, 2.0, 3.0, 4.0)
num_mat

array([[1., 2.],
[3., 4.]])

Also, be careful because NumPy and SymPy have many functions that are named the same and you likley don’t want
to mix them up:
np.cos(5) + sm.cos(5)

216 Chapter 17. Simulation and Visualization

https://numpy.org
https://en.wikipedia.org/wiki/Array_programming
https://en.wikipedia.org/wiki/Array_programming
https://docs.sympy.org/latest/modules/utilities/lambdify.html#sympy.utilities.lambdify.lambdify

Learn Multibody Dynamics

0.283662185463226 + cos (5) (17.3)

We import NumPy as np and SymPy as sm to ensure functions with the same names can coexist.

Returning to the example of the two rods and the sliding mass from the previous chapter, we regenerate the symbolic
equations of motion and stop when we have q̄, ū,Mk, ḡk,Md, and ḡd. The following drop down has the SymPy code to
generate these symbolic vectors and matrices take from the prior chapter.

Symbolic Setup Code

m, g, kt, kl, l = sm.symbols('m, g, k_t, k_l, l')
q1, q2, q3 = me.dynamicsymbols('q1, q2, q3')
u1, u2, u3 = me.dynamicsymbols('u1, u2, u3')

N = me.ReferenceFrame('N')
A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')

A.orient_axis(N, q1, N.z)
B.orient_axis(A, q2, A.x)

A.set_ang_vel(N, u1*N.z)
B.set_ang_vel(A, u2*A.x)

O = me.Point('O')
Ao = me.Point('A_O')
Bo = me.Point('B_O')
Q = me.Point('Q')

Ao.set_pos(O, l/2*A.x)
Bo.set_pos(O, l*A.x)
Q.set_pos(Bo, q3*B.y)

O.set_vel(N, 0)
Ao.v2pt_theory(O, N, A)
Bo.v2pt_theory(O, N, A)
Q.set_vel(B, u3*B.y)
Q.v1pt_theory(Bo, N, B)

t = me.dynamicsymbols._t

qdot_repl = {q1.diff(t): u1,
q2.diff(t): u2,
q3.diff(t): u3}

Q.set_acc(N, Q.acc(N).xreplace(qdot_repl))

R_Ao = m*g*N.x
R_Bo = m*g*N.x + kl*q3*B.y
R_Q = m/4*g*N.x - kl*q3*B.y
T_A = -kt*q1*N.z + kt*q2*A.x
T_B = -kt*q2*A.x

I = m*l**2/12

(continues on next page)

17.3. Numerical Evaluation 217

Learn Multibody Dynamics

(continued from previous page)
I_A_Ao = I*me.outer(A.y, A.y) + I*me.outer(A.z, A.z)
I_B_Bo = I*me.outer(B.x, B.x) + I*me.outer(B.z, B.z)

points = [Ao, Bo, Q]
forces = [R_Ao, R_Bo, R_Q]
masses = [m, m, m/4]

frames = [A, B]
torques = [T_A, T_B]
inertias = [I_A_Ao, I_B_Bo]

Fr_bar = []
Frs_bar = []

for ur in [u1, u2, u3]:

Fr = 0
Frs = 0

for Pi, Ri, mi in zip(points, forces, masses):
vr = Pi.vel(N).diff(ur, N)
Fr += vr.dot(Ri)
Rs = -mi*Pi.acc(N)
Frs += vr.dot(Rs)

for Bi, Ti, Ii in zip(frames, torques, inertias):
wr = Bi.ang_vel_in(N).diff(ur, N)
Fr += wr.dot(Ti)
Ts = -(Bi.ang_acc_in(N).dot(Ii) +

me.cross(Bi.ang_vel_in(N), Ii).dot(Bi.ang_vel_in(N)))
Frs += wr.dot(Ts)

Fr_bar.append(Fr)
Frs_bar.append(Frs)

Fr = sm.Matrix(Fr_bar)
Frs = sm.Matrix(Frs_bar)

q = sm.Matrix([q1, q2, q3])
u = sm.Matrix([u1, u2, u3])

qd = q.diff(t)
ud = u.diff(t)

ud_zerod = {udr: 0 for udr in ud}

Mk = -sm.eye(3)
gk = u

Md = Frs.jacobian(ud)
gd = Frs.xreplace(ud_zerod) + Fr

q, u, qd, ud

218 Chapter 17. Simulation and Visualization

Learn Multibody Dynamics

q1q2
q3

 ,
u1u2
u3

 ,
q̇1q̇2
q̇3

 ,
u̇1u̇2
u̇3

 (17.4)

Mk, gk

−1 0 0
0 −1 0
0 0 −1

 ,
u1u2
u3

 (17.5)

Md, gd

−

l2m cos2 (q2)
12 − 19l2m

12 − mq23 cos2 (q2)
4

lmq3 sin (q2)
4 − lm cos (q2)

4
lmq3 sin (q2)

4 − l2m
12 − mq23

4 0

− lm cos (q2)
4 0 −m

4

 ,

− 7glm sin (q1)

4 − gmq3 cos (q1) cos (q2)
4 − ktq1 +

l2mu1u2 sin (q2) cos (q2)
6 − lmq3u

2
1 cos (q2)
4 + l

(
−m(−q3u2

1 cos2 (q2)−q3u2
2) cos (q2)

4 +
m(q3u2

1 sin (q2) cos (q2)+2u2u3) sin (q2)
4

)
+ m(2q3u1u2 sin (q2)−2u1u3 cos (q2))q3 cos (q2)

4

gmq3 sin (q1) sin (q2)
4 − ktq2 − l2mu2

1 sin (q2) cos (q2)
12 − m(q3u2

1 sin (q2) cos (q2)+2u2u3)q3
4

− gm sin (q1) cos (q2)
4 − klq3 −

m(−q3u2
1 cos2 (q2)−q3u2

2)
4

(17.6)

Additionally, we will define a column vector p̄ that contains all of the constant parameters in the equations of motion.
We should know these from our problem definition but they can also be found using free_symbols():

Mk.free_symbols | gk.free_symbols | Md.free_symbols | gd.free_symbols

{g, kl, kt, l,m, t} (17.7)

The | operator does the union of Python sets, which is the date type that free_symbols returns. t is not a constant
parameter, but the rest are. We can then define the symbolic p as:

p = sm.Matrix([g, kl, kt, l, m])
p

g
kl
kt
l
m

 (17.8)

Now we will create a function to evaluateMk, ḡk,Md, and ḡd. given q̄, ū and p̄.

eval_eom = sm.lambdify((q, u, p), [Mk, gk, Md, gd])

To test out the function eval_eom() we need some NumPy 1D arrays for q̄, ū and p̄.

17.3. Numerical Evaluation 219

Learn Multibody Dynamics

Warning: Make sure to use consistent units when you introduce numbers! I recommend always using force =
mass× acceleration → N = kg m · s−2 and torque = inertia× angular acceleration → N m = kg m2 · rad s−2.

The deg2rad() and rad2deg() are helpful for angle conversions. All SymPy and NumPy trigonometric functions
operate on radians, so you’ll have to convert if you prefer thinking in degrees. My recommendation is to only use degrees
when displaying the outputs, so keep any calls to these two functions at the input and output of your whole computation
pipeline.
Here I introduce q_vals, u_vals, and p_vals, each a 1D NumPy array. Make sure to use a different variable name
than your symbols so you can distinguish the symbolic and numeric matrices and arrays.

q_vals = np.array([
np.deg2rad(25.0), # q1, rad
np.deg2rad(5.0), # q2, rad
0.1, # q3, m

])
q_vals, type(q_vals), q_vals.shape

(array([0.43633231, 0.08726646, 0.1]), numpy.ndarray, (3,))

u_vals = np.array([
0.1, # u1, rad/s
2.2, # u2, rad/s
0.3, # u3, m/s

])
u_vals, type(u_vals), u_vals.shape

(array([0.1, 2.2, 0.3]), numpy.ndarray, (3,))

p_vals = np.array([
9.81, # g, m/s**2
2.0, # kl, N/m
0.01, # kt, Nm/rad
0.6, # l, m
1.0, # m, kg

])
p_vals, type(p_vals), p_vals.shape

(array([9.81, 2. , 0.01, 0.6 , 1.]), numpy.ndarray, (5,))

Now we can call eval_eomwith the numeric inputs to get the numerical values of all of the equation of motion matrices
and vectors:

Mk_vals, gk_vals, Md_vals, gd_vals = eval_eom(q_vals, u_vals, p_vals)
Mk_vals, gk_vals, Md_vals, gd_vals

(array([[-1, 0, 0],
[0, -1, 0],
[0, 0, -1]]),

array([[0.1],
[2.2],
[0.3]]),

array([[-0.60225313, 0.00130734, -0.1494292],
[0.00130734, -0.0325 , 0.],

(continues on next page)

220 Chapter 17. Simulation and Visualization

Learn Multibody Dynamics

(continued from previous page)
[-0.1494292 , 0. , -0.25]]),

array([[-4.48963535],
[-0.02486744],
[-1.1112791]]))

Now we can solve for the state derivatives, ˙̄q and ˙̄u, numerically using NumPy’s solve() function (not the same as
SymPy’s solve()!) for linear systems of equations (Ax̄ = b̄ type systems).
We first numerically solve the kinematical differential equations for ˙̄q:

qd_vals = np.linalg.solve(-Mk_vals, np.squeeze(gk_vals))
qd_vals

array([0.1, 2.2, 0.3])

In this case, ˙̄q = ū but for nontrivial generalized speed definitions that will not be so. This next linear system solve gives
the accelerations ˙̄u:

ud_vals = np.linalg.solve(-Md_vals, np.squeeze(gd_vals))
ud_vals

array([-7.46056427, -1.06525862, 0.01418834])

Note: Note the use of squeeze(). This forces gk_vals and gd_vals to be a 1D array with shape(3,) instead of
a 2D array of shape(3, 1). This then causes qd_vals and ud_vals to be 1D arrays instead of 2D.

np.linalg.solve(-Mk_vals, gk_vals)

array([[0.1],
[2.2],
[0.3]])

17.4 Simulation

To simulate the system forward in time, we solve the initial value problem of the ordinary differential equations by
numerically integrating f̄m(t, x̄, p̄). A simple way to do so, is to use Euler’s Method:

x̄i+1 = x̄i +∆tf̄m(ti, x̄i, p̄) (17.9)

Starting with ti = t0 and some initial values of the states x̄i = x̄0, the state at ∆t in the future is computed. We repeat
this until ti = tf to find the trajectories of x̄ with respect to time.
The following function implements Euler’s Method:

def euler_integrate(rhs_func, tspan, x0_vals, p_vals, delt=0.03):
"""Returns state trajectory and corresponding values of time resulting
from integrating the ordinary differential equations with Euler's
Method.

Parameters

(continues on next page)

17.4. Simulation 221

https://numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html#numpy.linalg.solve
https://numpy.org/doc/stable/reference/generated/numpy.squeeze.html#numpy.squeeze
https://en.wikipedia.org/wiki/Initial_value_problem
https://en.wikipedia.org/wiki/Euler_method

Learn Multibody Dynamics

(continued from previous page)
==========
rhs_func : function

Python function that evaluates the derivative of the state and takes
this form ``dxdt = f(t, x, p)``.

tspan : 2-tuple of floats
The initial time and final time values: (t0, tf).

x0_vals : array_like, shape(2*n,)
Values of the state x at t0.

p_vals : array_like, shape(o,)
Values of constant parameters.

delt : float
Integration time step in seconds/step.

Returns
=======
ts : ndarray(m,)

Monotonically increasing values of time.
xs : ndarray(m, 2*n)

State values at each time in ts.

"""
generate monotonically increasing values of time.
duration = tspan[1] - tspan[0]
num_samples = round(duration/delt) + 1
ts = np.arange(tspan[0], tspan[0] + delt*num_samples, delt)

create an empty array to hold the state values.
x = np.empty((len(ts), len(x0_vals)))

set the initial conditions to the first element.
x[0, :] = x0_vals

use a for loop to sequentially calculate each new x.
for i, ti in enumerate(ts[:-1]):

x[i + 1, :] = x[i, :] + delt*rhs_func(ti, x[i, :], p_vals)

return ts, x

I used linspace() to generate equally spaced values between t0 and tf . Nowwe need a Python function that represents
f̄m(ti, x̄i, p̄). This function evaluates the right hand side of the explicitly ordinary differential equations which calculates
the time derivatives of the state.

def eval_rhs(t, x, p):
"""Return the right hand side of the explicit ordinary differential
equations which evaluates the time derivative of the state ``x`` at time
``t``.

Parameters
==========
t : float

Time in seconds.
x : array_like, shape(6,)

State at time t: [q1, q2, q3, u1, u2, u3]
p : array_like, shape(5,)

Constant parameters: [g, kl, kt, l, m]

(continues on next page)

222 Chapter 17. Simulation and Visualization

https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace

Learn Multibody Dynamics

(continued from previous page)
Returns
=======
xd : ndarray, shape(6,)

Derivative of the state with respect to time at time ``t``.

"""

unpack the q and u vectors from x
q = x[:3]
u = x[3:]

evaluate the equations of motion matrices with the values of q, u, p
Mk, gk, Md, gd = eval_eom(q, u, p)

solve for q' and u'
qd = np.linalg.solve(-Mk, np.squeeze(gk))
ud = np.linalg.solve(-Md, np.squeeze(gd))

pack dq/dt and du/dt into a new state time derivative vector dx/dt
xd = np.empty_like(x)
xd[:3] = qd
xd[3:] = ud

return xd

With the function evaluated and numerical values already defined above we can check to see if it works. First combine q̄
and ū into a single column vector of the initial conditions x0 and pick an arbitrary value for time.

x0 = np.empty(6)
x0[:3] = q_vals
x0[3:] = u_vals

t0 = 0.1

Now execute the function:

eval_rhs(t0, x0, p_vals)

array([0.1 , 2.2 , 0.3 , -7.46056427, -1.06525862,
0.01418834])

It seems to work, giving a result for the time derivative of the state vector, matching the results we had above. Now we
can try out the euler_integrate() function to integration from t0 to tf:

tf = 2.0

ts, xs = euler_integrate(eval_rhs, (t0, tf), x0, p_vals)

Our euler_integrate() function returns the state trajectory and the corresponding time. They look like:

ts

array([0.1 , 0.13, 0.16, 0.19, 0.22, 0.25, 0.28, 0.31, 0.34, 0.37, 0.4 ,
0.43, 0.46, 0.49, 0.52, 0.55, 0.58, 0.61, 0.64, 0.67, 0.7 , 0.73,
0.76, 0.79, 0.82, 0.85, 0.88, 0.91, 0.94, 0.97, 1. , 1.03, 1.06,

(continues on next page)

17.4. Simulation 223

Learn Multibody Dynamics

(continued from previous page)
1.09, 1.12, 1.15, 1.18, 1.21, 1.24, 1.27, 1.3 , 1.33, 1.36, 1.39,
1.42, 1.45, 1.48, 1.51, 1.54, 1.57, 1.6 , 1.63, 1.66, 1.69, 1.72,
1.75, 1.78, 1.81, 1.84, 1.87, 1.9 , 1.93, 1.96, 1.99])

type(ts), ts.shape

(numpy.ndarray, (64,))

xs

array([[4.36332313e-01, 8.72664626e-02, 1.00000000e-01,
1.00000000e-01, 2.20000000e+00, 3.00000000e-01],

[4.39332313e-01, 1.53266463e-01, 1.09000000e-01,
-1.23816928e-01, 2.16804224e+00, 3.00425650e-01],

[4.35617805e-01, 2.18307730e-01, 1.18012770e-01,
-3.48867554e-01, 2.13303503e+00, 2.99423633e-01],

[4.25151779e-01, 2.82298781e-01, 1.26995479e-01,
-5.72475739e-01, 2.09463526e+00, 2.97361542e-01],

[4.07977506e-01, 3.45137839e-01, 1.35916325e-01,
-7.91929289e-01, 2.05197871e+00, 2.94628416e-01],

[3.84219628e-01, 4.06697200e-01, 1.44755177e-01,
-1.00444789e+00, 2.00382451e+00, 2.91554565e-01],

[3.54086191e-01, 4.66811935e-01, 1.53501814e-01,
-1.20715867e+00, 1.94877129e+00, 2.88335792e-01],

[3.17871431e-01, 5.25275074e-01, 1.62151888e-01,
-1.39708735e+00, 1.88551903e+00, 2.84974403e-01],

[2.75958810e-01, 5.81840645e-01, 1.70701120e-01,
-1.57117194e+00, 1.81314156e+00, 2.81247424e-01],

[2.28823652e-01, 6.36234892e-01, 1.79138543e-01,
-1.72630399e+00, 1.73132870e+00, 2.76708292e-01],

[1.77034532e-01, 6.88174753e-01, 1.87439792e-01,
-1.85939863e+00, 1.64055711e+00, 2.70722509e-01],

[1.21252574e-01, 7.37391466e-01, 1.95561467e-01,
-1.96749077e+00, 1.54215738e+00, 2.62531540e-01],

[6.22278505e-02, 7.83656188e-01, 2.03437413e-01,
-2.04785035e+00, 1.43826241e+00, 2.51334050e-01],

[7.92340069e-04, 8.26804060e-01, 2.10977435e-01,
-2.09810628e+00, 1.33164459e+00, 2.36370890e-01],

[-6.21508484e-02, 8.66753398e-01, 2.18068561e-01,
-2.11636717e+00, 1.22547077e+00, 2.17000797e-01],

[-1.25641864e-01, 9.03517521e-01, 2.24578585e-01,
-2.10132625e+00, 1.12301845e+00, 1.92757262e-01],

[-1.88681651e-01, 9.37208074e-01, 2.30361303e-01,
-2.05234005e+00, 1.02739894e+00, 1.63382255e-01],

[-2.50251853e-01, 9.68030042e-01, 2.35262771e-01,
-1.96947297e+00, 9.41324864e-01, 1.28837671e-01],

[-3.09336042e-01, 9.96269788e-01, 2.39127901e-01,
-1.85350427e+00, 8.66944026e-01, 8.92990821e-02],

[-3.64941170e-01, 1.02227811e+00, 2.41806873e-01,
-1.70589822e+00, 8.05745012e-01, 4.51378231e-02],

[-4.16118116e-01, 1.04645046e+00, 2.43161008e-01,
-1.52874283e+00, 7.58527111e-01, -3.10326579e-03],

[-4.61980401e-01, 1.06920627e+00, 2.43067910e-01,
-1.32466575e+00, 7.25419993e-01, -5.47370444e-02],

[-5.01720374e-01, 1.09096887e+00, 2.41425799e-01,

(continues on next page)

224 Chapter 17. Simulation and Visualization

Learn Multibody Dynamics

(continued from previous page)
-1.09673819e+00, 7.05937072e-01, -1.08961098e-01],

[-5.34622520e-01, 1.11214698e+00, 2.38156966e-01,
-8.48377776e-01, 6.99048783e-01, -1.64889059e-01],

[-5.60073853e-01, 1.13311845e+00, 2.33210294e-01,
-5.83259685e-01, 7.03266085e-01, -2.21585204e-01],

[-5.77571643e-01, 1.15421643e+00, 2.26562738e-01,
-3.05242994e-01, 7.16728855e-01, -2.78102687e-01],

[-5.86728933e-01, 1.17571830e+00, 2.18219657e-01,
-1.83153063e-02, 7.37297421e-01, -3.33524242e-01],

[-5.87278392e-01, 1.19783722e+00, 2.08213930e-01,
2.73444426e-01, 7.62647870e-01, -3.87002450e-01],

[-5.79075060e-01, 1.22071666e+00, 1.96603856e-01,
5.65888142e-01, 7.90372680e-01, -4.37795193e-01],

[-5.62098415e-01, 1.24442784e+00, 1.83470001e-01,
8.54811324e-01, 8.18087698e-01, -4.85291412e-01],

[-5.36454076e-01, 1.26897047e+00, 1.68911258e-01,
1.13596271e+00, 8.43544507e-01, -5.29023016e-01],

[-5.02375194e-01, 1.29427680e+00, 1.53040568e-01,
1.40505807e+00, 8.64744480e-01, -5.68660838e-01],

[-4.60223452e-01, 1.32021914e+00, 1.35980743e-01,
1.65780471e+00, 8.80047808e-01, -6.03995480e-01],

[-4.10489311e-01, 1.34662057e+00, 1.17860878e-01,
1.88994245e+00, 8.88268730e-01, -6.34907053e-01],

[-3.53791037e-01, 1.37326863e+00, 9.88136667e-02,
2.09730514e+00, 8.88747420e-01, -6.61330213e-01],

[-2.90871883e-01, 1.39993105e+00, 7.89737603e-02,
2.27590461e+00, 8.81389870e-01, -6.83221797e-01],

[-2.22594745e-01, 1.42637275e+00, 5.84771064e-02,
2.42203585e+00, 8.66668771e-01, -7.00537408e-01],

[-1.49933669e-01, 1.45237281e+00, 3.74609842e-02,
2.53239896e+00, 8.45580400e-01, -7.13220652e-01],

[-7.39617005e-02, 1.47774023e+00, 1.60643646e-02,
2.60422940e+00, 8.19554682e-01, -7.21205288e-01],

[4.16518154e-03, 1.50232687e+00, -5.57179403e-03,
2.63542555e+00, 7.90319326e-01, -7.24427319e-01],

[8.32279481e-02, 1.52603645e+00, -2.73046136e-02,
2.62466048e+00, 7.59725678e-01, -7.22841890e-01],

[1.61967762e-01, 1.54882822e+00, -4.89898703e-02,
2.57146487e+00, 7.29553925e-01, -7.16439450e-01],

[2.39111708e-01, 1.57071483e+00, -7.04830538e-02,
2.47627011e+00, 7.01325433e-01, -7.05256667e-01],

[3.13399812e-01, 1.59175460e+00, -9.16407538e-02,
2.34040397e+00, 6.76154998e-01, -6.89379799e-01],

[3.83611931e-01, 1.61203925e+00, -1.12322148e-01,
2.16603688e+00, 6.54671168e-01, -6.68940608e-01],

[4.48593037e-01, 1.63167938e+00, -1.32390366e-01,
1.95608296e+00, 6.37018712e-01, -6.44106831e-01],

[5.07275526e-01, 1.65078994e+00, -1.51713571e-01,
1.71406620e+00, 6.22938813e-01, -6.15070314e-01],

[5.58697512e-01, 1.66947811e+00, -1.70165680e-01,
1.44396681e+00, 6.11906749e-01, -5.82036029e-01],

[6.02016516e-01, 1.68783531e+00, -1.87626761e-01,
1.15006549e+00, 6.03298605e-01, -5.45214730e-01],

[6.36518481e-01, 1.70593427e+00, -2.03983203e-01,
8.36802201e-01, 5.96558484e-01, -5.04821104e-01],

[6.61622547e-01, 1.72383102e+00, -2.19127836e-01,
5.08663225e-01, 5.91343485e-01, -4.61078217e-01],

(continues on next page)

17.4. Simulation 225

Learn Multibody Dynamics

(continued from previous page)
[6.76882444e-01, 1.74157133e+00, -2.32960183e-01,
1.70104973e-01, 5.87631757e-01, -4.14227908e-01],

[6.81985593e-01, 1.75920028e+00, -2.45387020e-01,
-1.74482332e-01, 5.85786780e-01, -3.64545604e-01],

[6.76751123e-01, 1.77677388e+00, -2.56323388e-01,
-5.20773373e-01, 5.86577261e-01, -3.12357072e-01],

[6.61127922e-01, 1.79437120e+00, -2.65694100e-01,
-8.64475606e-01, 5.91156371e-01, -2.58054046e-01],

[6.35193654e-01, 1.81210589e+00, -2.73435722e-01,
-1.20127673e+00, 6.01006553e-01, -2.02105739e-01],

[5.99155352e-01, 1.83013609e+00, -2.79498894e-01,
-1.52678495e+00, 6.17857094e-01, -1.45063860e-01],

[5.53351803e-01, 1.84867180e+00, -2.83850810e-01,
-1.83647709e+00, 6.43581213e-01, -8.75598764e-02],

[4.98257491e-01, 1.86797924e+00, -2.86477606e-01,
-2.12567032e+00, 6.80078039e-01, -3.02944186e-02],

[4.34487381e-01, 1.88838158e+00, -2.87386438e-01,
-2.38953235e+00, 7.29142906e-01, 2.59803906e-02],

[3.62801410e-01, 1.91025587e+00, -2.86607027e-01,
-2.62314224e+00, 7.92327527e-01, 8.04846656e-02],

[2.84107143e-01, 1.93402569e+00, -2.84192487e-01,
-2.82160885e+00, 8.70790639e-01, 1.32439931e-01],

[1.99458878e-01, 1.96014941e+00, -2.80219289e-01,
-2.98024641e+00, 9.65140541e-01, 1.81104004e-01],

[1.10051485e-01, 1.98910363e+00, -2.74786169e-01,
-3.09479777e+00, 1.07527459e+00, 2.25812638e-01]])

type(xs), xs.shape

(numpy.ndarray, (64, 6))

17.5 Plotting Simulation Trajectories

Matplotlib is the most widely used Python library for making plots. Browse their example gallery to get an idea of the
library’s capabilities. We will use matplotlib to visualize the state trajectories and animate our system. The convention
for importing the main functionality of matplotlib is:

import matplotlib.pyplot as plt

The plot() function offers the simplest way to plot a chart of x values versus y values. I designed the output of
euler_integrate() to work well with this plotting function. To make a basic plot use:

plt.plot(ts, xs);

226 Chapter 17. Simulation and Visualization

https://matplotlib.org
https://matplotlib.org/stable/gallery/index.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot

Learn Multibody Dynamics

Note: The closing semicolon at the end of the statement suppresses the display of the returned objects in Jupyter. See
the difference here:

plt.plot(ts, xs)

[<matplotlib.lines.Line2D at 0x7fe3e1722320>,
<matplotlib.lines.Line2D at 0x7fe3e17219c0>,
<matplotlib.lines.Line2D at 0x7fe3e1721b70>,
<matplotlib.lines.Line2D at 0x7fe3e1722650>,
<matplotlib.lines.Line2D at 0x7fe3eaa3ff10>,
<matplotlib.lines.Line2D at 0x7fe3eaab61d0>]

17.5. Plotting Simulation Trajectories 227

Learn Multibody Dynamics

This plot shows that the state trajectory changes with respect to time, but without some more information it is hard to
interpret. The following function uses subplots() to make a figure with panels for the different state variables. I use
vlatex() to include the symbolic symbol names in the legends. The other matplotlib functions and methods I use are:

• set_size_inches()

• plot()

• legend()

• set_ylabel()

• set_xlabel()

• tight_layout()

I also make use of array slicing notation to select which rows and columns I want from each array. See the NumPy
documentation Indexing on ndarrays for information on how this works.

def plot_results(ts, xs):
"""Returns the array of axes of a 4 panel plot of the state trajectory
versus time.

Parameters
==========
ts : array_like, shape(m,)

Values of time.
xs : array_like, shape(m, 6)

Values of the state trajectories corresponding to ``ts`` in order
[q1, q2, q3, u1, u2, u3].

(continues on next page)

228 Chapter 17. Simulation and Visualization

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots.html#matplotlib.pyplot.subplots
https://docs.sympy.org/latest/modules/physics/vector/api/printing.html#sympy.physics.vector.printing.vlatex
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.set_size_inches
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.plot.html#matplotlib.axes.Axes.plot
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.legend.html#matplotlib.axes.Axes.legend
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_ylabel.html#matplotlib.axes.Axes.set_ylabel
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_xlabel.html#matplotlib.axes.Axes.set_xlabel
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.tight_layout
https://numpy.org/doc/stable/user/basics.indexing.html

Learn Multibody Dynamics

(continued from previous page)
Returns
=======
axes : ndarray, shape(4,)

Matplotlib axes for each panel.

"""

fig, axes = plt.subplots(4, 1, sharex=True)

fig.set_size_inches((10.0, 6.0))

axes[0].plot(ts, np.rad2deg(xs[:, :2]))
axes[1].plot(ts, xs[:, 2])
axes[2].plot(ts, np.rad2deg(xs[:, 3:5]))
axes[3].plot(ts, xs[:, 5])

axes[0].legend([me.vlatex(q[0], mode='inline'),
me.vlatex(q[1], mode='inline')])

axes[1].legend([me.vlatex(q[2], mode='inline')])
axes[2].legend([me.vlatex(u[0], mode='inline'),

me.vlatex(u[1], mode='inline')])
axes[3].legend([me.vlatex(u[2], mode='inline')])

axes[0].set_ylabel('Angle [deg]')
axes[1].set_ylabel('Distance [m]')
axes[2].set_ylabel('Angular Rate [deg/s]')
axes[3].set_ylabel('Speed [m/s]')

axes[3].set_xlabel('Time [s]')

fig.tight_layout()

return axes

Our function now gives an interpretable view of the results:

plot_results(ts, xs);

17.5. Plotting Simulation Trajectories 229

Learn Multibody Dynamics

We now see that q1 oscillates between ±40deg with a single period. q2 grows to around ±100deg, and q3 has half an
oscillation between -0.2 and 0.2 meters. For the initial conditions and constants we choose, this seems physically feasible.

17.6 Integration with SciPy

Our euler_integrate() function seems to do the trick, but all numerical integrators suffer from numerical errors.
Careful attention to truncation error is needed to keep the error in the resulting trajectories within some acceptable tol-
erance for your problem’s needs. Euler’s Method has poor truncation error unless very small time steps are chosen. But
more time steps results in longer computation time. There are a large number of other numerical integration methods
that provide better results with fewer time steps, but at the cost of more complexity in the integration algorithm.
SciPy is built on top of NumPy and provides a large assortment of battle tested numerical methods for NumPy arrays,
including numerical methods for integration. We are solving the initial value problem of ordinary differential equations
and SciPy includes the function solve_ivp() for this purpose. solve_ivp() provides access to a several different
integration methods that are suitable for different problems. The default method used is a Runge-Kutta method that works
well for non-stiff problems.
We will only be using solve_ivp() from SciPy so we can import it directly with:

from scipy.integrate import solve_ivp

We can use solve_ivp() in much the same way as our euler_integrate() function (in fact I designed eu-
ler_integrate() to mimic solve_ivp()). The difference is that solve_ivp() takes a function that evaluates
the right hand side of the ordinary differential equations that is of the form f(t, x) (no p!). Our parameter vector p
must be passed to the args= optional keyword argument in solve_ivp() to get things to work. If we only have one
extra argument, as we do f(t, x, p), then we must make a 1-tuple (p_vals,). Other than that, the inputs are
the same as euler_integrate(). solve_ivp() returns a solution object that contains quite a bit of information
(other than the trajectories). See the documentation for solve_ivp() for all the details and more examples.
Here is how we use the integrator with our previously defined system:

230 Chapter 17. Simulation and Visualization

https://en.wikipedia.org/wiki/Truncation_error_(numerical_integration)
https://www.scipy.org
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html#scipy.integrate.solve_ivp
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html#scipy.integrate.solve_ivp

Learn Multibody Dynamics

result = solve_ivp(eval_rhs, (t0, tf), x0, args=(p_vals,))

The time values are in the result.t attribute:

result.t

array([0.1 , 0.13120248, 0.29762659, 0.54422251, 0.80410512,
1.06256808, 1.31993114, 1.57487353, 1.83715709, 2.])

and the state trajectory is in the result.y attribute:

result.y

array([[0.43633231, 0.4358189 , 0.31525018, -0.11015295, -0.46375645,
-0.34485627, 0.12132567, 0.43601266, 0.27143017, -0.01911091],

[0.08726646, 0.15537688, 0.49605864, 0.88149593, 1.13596246,
1.39359322, 1.67416762, 1.92225131, 2.13926064, 2.29230085],

[0.1 , 0.10935888, 0.15799993, 0.21797738, 0.21721945,
0.11520445, -0.03955252, -0.17887644, -0.25034975, -0.24594355],

[0.1 , -0.13284291, -1.26834506, -1.88255608, -0.55453818,
1.39013663, 1.86357587, 0.37219434, -1.5003001 , -1.93004498],

[2.2 , 2.16517843, 1.90078084, 1.19931529, 0.90164316,
1.09025742, 1.04941978, 0.88566504, 0.83634928, 1.07386933],

[0.3 , 0.299615 , 0.28218305, 0.16978927, -0.2076191 ,
-0.54349971, -0.61398805, -0.44313122, -0.08440758, 0.13024152]])

Note the shape of the trajectory array:

np.shape(result.y)

(6, 10) (17.10)

It is the transpose of our xs computed above. Knowing that we can use our plot_results() function to view the
results. I use transpose() to transpose the array before passing it into the plot function.

plot_results(result.t, np.transpose(result.y));

17.6. Integration with SciPy 231

https://numpy.org/doc/stable/reference/generated/numpy.transpose.html#numpy.transpose

Learn Multibody Dynamics

The default result is very coarse in time (only 10 steps!). This is because the underlying integration algorithm adaptively
selects the necessary time steps to stay within the desired maximum truncation error. The Runge-Kutta method gives
good accuracy with fewer integration steps in this case.
If you want to specify which time values you’d like the result presented at you can do so by interpolating the results by
providing the time values with the keyword argument t_eval=.

result = solve_ivp(eval_rhs, (t0, tf), x0, args=(p_vals,), t_eval=ts)

plot_results(result.t, np.transpose(result.y));

232 Chapter 17. Simulation and Visualization

Learn Multibody Dynamics

Lastly, let’s compare the results from euler_inegrate() with solve_ivp(), the later of which uses a Runge-
Kutta method that has lower truncation error. We’ll plot only q1 for this comparison.

fig, ax = plt.subplots()
fig.set_size_inches((10.0, 6.0))

ax.plot(ts, np.rad2deg(xs[:, 0]), 'k',
result.t, np.rad2deg(np.transpose(result.y)[:, 0]), 'b');

ax.legend(['euler_integrate', 'solve_ivp'])
ax.set_xlabel('Time [s]')
ax.set_ylabel('Angle [deg]');

17.6. Integration with SciPy 233

Learn Multibody Dynamics

You can clearly see that the Euler Method deviates from the more accurate Runge-Kutta method. You’ll need to learn
more about truncation error and the various integration methods to ensure you are getting the results you desire. For now,
be aware that truncation error and floating point arithmetic error can give you inaccurate results.
Now set xs equal to the solve_ivp() result for use in the next section:

xs = np.transpose(result.y)

17.7 Animation with Matplotlib

Matplotlib also provides tools to make animations by iterating over data and updating the plot. I’ll create a very simple
set of plots that give 4 views of interesting points in our system.
Matplotlib’s plot axes default to displaying the abscissa (x) horizontal and positive towards the right and the ordinate (y)
vertical and positive upwards. The coordinate system in Fig. 16.1 has n̂x positive downwards and n̂y positive to the right.
We can create a viewing reference frameM that matches matplotlib’s axes like so:

M = me.ReferenceFrame('M')
M.orient_axis(N, sm.pi/2, N.z)

Now m̂x is positive to the right, m̂y is positive upwards, and m̂z points out of the screen.
I’ll also introduce a couple of points on each end of the rod B, just for visualization purposes:

Bl = me.Point('B_l')
Br = me.Point('B_r')
Bl.set_pos(Bo, -l/2*B.y)
Br.set_pos(Bo, l/2*B.y)

234 Chapter 17. Simulation and Visualization

https://en.wikipedia.org/wiki/Floating-point_arithmetic

Learn Multibody Dynamics

Now, we can project the four points Bo, Q,Bl, Br onto the unit vectors ofM using lambdify() to get the Cartesian
coordinates of each point relative to point O. I use row_join() to stack the matrices together to build a single matrix
with all points’ coordinates.

coordinates = O.pos_from(O).to_matrix(M)
for point in [Bo, Q, Bl, Br]:

coordinates = coordinates.row_join(point.pos_from(O).to_matrix(M))

eval_point_coords = sm.lambdify((q, p), coordinates)
eval_point_coords(q_vals, p_vals)

array([[0. , 0.25357096, 0.34385686, -0.01728675, 0.52442866],
[0. , -0.54378467, -0.50168367, -0.67008769, -0.41748165],
[0. , 0. , 0.00871557, -0.02614672, 0.02614672]])

The first row are the x coordinates of each point, the second row has the y coordinates, and the last the z coordinates.
Now create the desired 4 panel figure with three 2D views of the system and one with a 3D view using the initial conditions
and constant parameters shown. I make use of add_subplot() to control if the panel is 2D or 3D. set_aspect()
ensures that the abscissa and ordinate dimensions display in a 1:1 ratio.

initial configuration of the points
x, y, z = eval_point_coords(q_vals, p_vals)

create a figure
fig = plt.figure()
fig.set_size_inches((10.0, 10.0))

setup the subplots
ax_top = fig.add_subplot(2, 2, 1)
ax_3d = fig.add_subplot(2, 2, 2, projection='3d')
ax_front = fig.add_subplot(2, 2, 3)
ax_right = fig.add_subplot(2, 2, 4)

common line and marker properties for each panel
line_prop = {

'color': 'black',
'marker': 'o',
'markerfacecolor': 'blue',
'markersize': 10,

}

top view
lines_top, = ax_top.plot(x, z, **line_prop)
ax_top.set_xlim((-0.5, 0.5))
ax_top.set_ylim((0.5, -0.5))
ax_top.set_title('Top View')
ax_top.set_xlabel('x')
ax_top.set_ylabel('z')
ax_top.set_aspect('equal')

3d view
lines_3d, = ax_3d.plot(x, z, y, **line_prop)
ax_3d.set_xlim((-0.5, 0.5))
ax_3d.set_ylim((0.5, -0.5))
ax_3d.set_zlim((-0.8, 0.2))
ax_3d.set_xlabel('x')
ax_3d.set_ylabel('z')

(continues on next page)

17.7. Animation with Matplotlib 235

https://docs.sympy.org/latest/modules/matrices/common.html#sympy.matrices.common.MatrixCommon.row_join
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.add_subplot
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_aspect.html#matplotlib.axes.Axes.set_aspect

Learn Multibody Dynamics

(continued from previous page)
ax_3d.set_zlabel('y')

front view
lines_front, = ax_front.plot(x, y, **line_prop)
ax_front.set_xlim((-0.5, 0.5))
ax_front.set_ylim((-0.8, 0.2))
ax_front.set_title('Front View')
ax_front.set_xlabel('x')
ax_front.set_ylabel('y')
ax_front.set_aspect('equal')

right view
lines_right, = ax_right.plot(z, y, **line_prop)
ax_right.set_xlim((0.5, -0.5))
ax_right.set_ylim((-0.8, 0.2))
ax_right.set_title('Right View')
ax_right.set_xlabel('z')
ax_right.set_ylabel('y')
ax_right.set_aspect('equal')

fig.tight_layout()

236 Chapter 17. Simulation and Visualization

Learn Multibody Dynamics

Now we will use FuncAnimation to generate an animation. See the animation examples for more information on
creating animations with matplotib.
First import FuncAnimation():

from matplotlib.animation import FuncAnimation

Now create a function that takes an frame index i, calculates the configuration of the points for the ith state in xs, and
updates the data for the lines we have already plotted with set_data() and set_data_3d().

def animate(i):
x, y, z = eval_point_coords(xs[i, :3], p_vals)
lines_top.set_data(x, z)
lines_3d.set_data_3d(x, z, y)
lines_front.set_data(x, y)
lines_right.set_data(z, y)

17.7. Animation with Matplotlib 237

https://matplotlib.org/stable/api/_as_gen/matplotlib.animation.FuncAnimation.html#matplotlib.animation.FuncAnimation
https://matplotlib.org/3.5.1/gallery/index.html#animation
https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D.set_data
https://matplotlib.org/stable/api/_as_gen/mpl_toolkits.mplot3d.art3d.Line3D.html#mpl_toolkits.mplot3d.art3d.Line3D.set_data_3d

Learn Multibody Dynamics

Now provide the figure, the animation update function, and the number of frames to FuncAnimation:

ani = FuncAnimation(fig, animate, len(ts))

FuncAnimation can create an interactive animation, movie files, and other types of outputs. Here I take advantage of
IPython’s HTML display function and the to_jshtml() method to create a web browser friendly visualization of the
animation.

from IPython.display import HTML

HTML(ani.to_jshtml(fps=30))

<IPython.core.display.HTML object>

If we’ve setup our animation correctly and our equations of motion are correct, we should see physically believable motion
of our system. In this case, it looks like we’ve successfully simulated and visualized our first multibody system!

238 Chapter 17. Simulation and Visualization

https://matplotlib.org/stable/api/_as_gen/matplotlib.animation.Animation.html#matplotlib.animation.Animation.to_jshtml

CHAPTER

EIGHTEEN

THREE DIMENSIONAL VISUALIZATION

Note: You can download this example as a Python script: visualization.py or Jupyter Notebook:
visualization.ipynb.

from scipy.integrate import solve_ivp
import numpy as np
import sympy as sm
import sympy.physics.mechanics as me

class ReferenceFrame(me.ReferenceFrame):

def __init__(self, *args, **kwargs):

kwargs.pop('latexs', None)

lab = args[0].lower()
tex = r'\hat{{{}}}_{}'

super(ReferenceFrame, self).__init__(*args,
latexs=(tex.format(lab, 'x'),

tex.format(lab, 'y'),
tex.format(lab, 'z')),

**kwargs)
me.ReferenceFrame = ReferenceFrame

In this chapter, I will give a basic introduction to creating three dimensional graphics to visualize the motion of your
multibody system. There are many software tools for generating interactive three dimensional graphics from classic lower
level tools like OpenGL to graphical user interfaces for drawing and animating 3D models like Blender1. We will use
pythreejs which is a Python wrapper to the three.js Javascript library that is built on WebGL which is a low level graphics
library similar to OpenGL but made to execute through your web browser. Check out the demos on three.js’s website to
get an idea of how powerful the tool is for 3D visualizations in the web browser.
I will again use the example in Fig. 16.1. Here is the figure for that system:
The following dropdown has all of the code to construct the model and simulate it with the time values ts and the state
trajectories xs as the final output.

Modeling and Simulation Code

1 Blender was birthed in the Netherlands!

239

https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/Blender_(software)
https://pythreejs.readthedocs.io/en/stable/
https://threejs.org/
https://en.wikipedia.org/wiki/WebGL
https://threejs.org/examples/#webgl_animation_keyframes

Learn Multibody Dynamics

240 Chapter 18. Three Dimensional Visualization

Learn Multibody Dynamics

m, g, kt, kl, l = sm.symbols('m, g, k_t, k_l, l')
q1, q2, q3 = me.dynamicsymbols('q1, q2, q3')
u1, u2, u3 = me.dynamicsymbols('u1, u2, u3')

N = me.ReferenceFrame('N')
A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')

A.orient_axis(N, q1, N.z)
B.orient_axis(A, q2, A.x)

A.set_ang_vel(N, u1*N.z)
B.set_ang_vel(A, u2*A.x)

O = me.Point('O')
Ao = me.Point('A_O')
Bo = me.Point('B_O')
Q = me.Point('Q')

Ao.set_pos(O, l/2*A.x)
Bo.set_pos(O, l*A.x)
Q.set_pos(Bo, q3*B.y)

O.set_vel(N, 0)
Ao.v2pt_theory(O, N, A)
Bo.v2pt_theory(O, N, A)
Q.set_vel(B, u3*B.y)
Q.v1pt_theory(Bo, N, B)

t = me.dynamicsymbols._t

qdot_repl = {q1.diff(t): u1,
q2.diff(t): u2,
q3.diff(t): u3}

Q.set_acc(N, Q.acc(N).xreplace(qdot_repl))

R_Ao = m*g*N.x
R_Bo = m*g*N.x + kl*q3*B.y
R_Q = m/4*g*N.x - kl*q3*B.y
T_A = -kt*q1*N.z + kt*q2*A.x
T_B = -kt*q2*A.x

I = m*l**2/12
I_A_Ao = I*me.outer(A.y, A.y) + I*me.outer(A.z, A.z)
I_B_Bo = I*me.outer(B.x, B.x) + I*me.outer(B.z, B.z)

points = [Ao, Bo, Q]
forces = [R_Ao, R_Bo, R_Q]
masses = [m, m, m/4]

frames = [A, B]
torques = [T_A, T_B]
inertias = [I_A_Ao, I_B_Bo]

Fr_bar = []
Frs_bar = []

(continues on next page)

241

Learn Multibody Dynamics

(continued from previous page)

for ur in [u1, u2, u3]:

Fr = 0
Frs = 0

for Pi, Ri, mi in zip(points, forces, masses):
vr = Pi.vel(N).diff(ur, N)
Fr += vr.dot(Ri)
Rs = -mi*Pi.acc(N)
Frs += vr.dot(Rs)

for Bi, Ti, Ii in zip(frames, torques, inertias):
wr = Bi.ang_vel_in(N).diff(ur, N)
Fr += wr.dot(Ti)
Ts = -(Bi.ang_acc_in(N).dot(Ii) +

me.cross(Bi.ang_vel_in(N), Ii).dot(Bi.ang_vel_in(N)))
Frs += wr.dot(Ts)

Fr_bar.append(Fr)
Frs_bar.append(Frs)

Fr = sm.Matrix(Fr_bar)
Frs = sm.Matrix(Frs_bar)

q = sm.Matrix([q1, q2, q3])
u = sm.Matrix([u1, u2, u3])
p = sm.Matrix([g, kl, kt, l, m])

qd = q.diff(t)
ud = u.diff(t)

ud_zerod = {udr: 0 for udr in ud}

Mk = -sm.eye(3)
gk = u

Md = Frs.jacobian(ud)
gd = Frs.xreplace(ud_zerod) + Fr

eval_eom = sm.lambdify((q, u, p), [Mk, gk, Md, gd])

def eval_rhs(t, x, p):
"""Return the right hand side of the explicit ordinary differential
equations which evaluates the time derivative of the state ``x`` at time
``t``.

Parameters
==========
t : float

Time in seconds.
x : array_like, shape(6,)

State at time t: [q1, q2, q3, u1, u2, u3]
p : array_like, shape(5,)

Constant parameters: [g, kl, kt, l, m]

Returns
(continues on next page)

242 Chapter 18. Three Dimensional Visualization

Learn Multibody Dynamics

(continued from previous page)
=======
xd : ndarray, shape(6,)

Derivative of the state with respect to time at time ``t``.

"""

unpack the q and u vectors from x
q = x[:3]
u = x[3:]

evaluate the equations of motion matrices with the values of q, u, p
Mk, gk, Md, gd = eval_eom(q, u, p)

solve for q' and u'
qd = np.linalg.solve(-Mk, np.squeeze(gk))
ud = np.linalg.solve(-Md, np.squeeze(gd))

pack dq/dt and du/dt into a new state time derivative vector dx/dt
xd = np.empty_like(x)
xd[:3] = qd
xd[3:] = ud

return xd

q_vals = np.array([
np.deg2rad(25.0), # q1, rad
np.deg2rad(5.0), # q2, rad
0.1, # q3, m

])

u_vals = np.array([
0.1, # u1, rad/s
2.2, # u2, rad/s
0.3, # u3, m/s

])

p_vals = np.array([
9.81, # g, m/s**2
3.0, # kl, N/m
0.01, # kt, Nm/rad
0.6, # l, m
1.0, # m, kg

])

x0 = np.empty(6)
x0[:3] = q_vals
x0[3:] = u_vals

fps = 20
t0, tf = 0.0, 10.0
ts = np.linspace(t0, tf, num=int(fps*(tf - t0)))
result = solve_ivp(eval_rhs, (t0, tf), x0, args=(p_vals,), t_eval=ts)
xs = result.y.T

ts.shape, xs.shape

243

Learn Multibody Dynamics

((200,), (200, 6))

18.1 pythreejs

pythreejs allows you to use three.js via Python. The functions and objects that pythreejs makes available are found in its
documentation, but since these have a 1:1 mapping to the three.js code, you’ll also find more comprehensive information
in the ThreeJS documentation. We will import pythreejs like so:

import pythreejs as p3js

pythreejs has many primitive geometric shapes, for example CylinderGeometry can be used to create cylinders and
cones:

cyl_geom = p3js.CylinderGeometry(radiusTop=2.0, radiusBottom=10.0, height=50.0)
cyl_geom

CylinderGeometry(height=50.0, radiusBottom=10.0, radiusTop=2.0)

The image above is interactive; you can use your mouse or trackpad to click, hold, and move the object.
If you want to apply a material to the surface of the geometry you create a Mesh which associates a Material with the
geometry. For example, you can color the above cylinder like so:

red_material = p3js.MeshStandardMaterial(color='red')

cyl_mesh = p3js.Mesh(geometry=cyl_geom, material=red_material)

cyl_mesh

Mesh(geometry=CylinderGeometry(height=50.0, radiusBottom=10.0, radiusTop=2.0),␣
↪→material=MeshStandardMaterial(a…

18.2 Creating a Scene

Here I create a new orange cylinder that is displaced from the origin of the scene and that has its own coordinate axes.
AxesHelper creates simple X (red), Y (green), and Z (blue) affixed to the mesh. position is overridden to set the
position.

cyl_geom = p3js.CylinderGeometry(radiusTop=0.1, radiusBottom=0.5, height=2.0)
cyl_material = p3js.MeshStandardMaterial(color='orange', wireframe=True)
cyl_mesh = p3js.Mesh(geometry=cyl_geom, material=cyl_material)
axes = p3js.AxesHelper()
cyl_mesh.add(axes)
cyl_mesh.position = (3.0, 3.0, 3.0)

Now we will create a Scene which can contain multiple meshes and other objects like lights, cameras, and axes. There
is a fair amount of boiler plate code for creating the static scene. All of the objects should be added to the children=
keyword argument of Scene. The last line creates a WebGLBufferRenderer that links the camera view to the scene
and enables OrbitControls to allow zooming, panning, and rotating with a mouse or trackpad.

244 Chapter 18. Three Dimensional Visualization

https://pythreejs.readthedocs.io
https://pythreejs.readthedocs.io
https://threejs.org/docs/index.html
https://pythreejs.readthedocs.io/en/stable/examples/Geometries.html
https://pythreejs.readthedocs.io/en/stable/api/geometries/CylinderGeometry_autogen.html#pythreejs.CylinderGeometry
https://pythreejs.readthedocs.io/en/stable/api/objects/Mesh_autogen.html#pythreejs.Mesh
https://pythreejs.readthedocs.io/en/stable/api/materials/Material_autogen.html#pythreejs.Material
https://pythreejs.readthedocs.io/en/stable/api/helpers/AxesHelper_autogen.html#pythreejs.AxesHelper
https://pythreejs.readthedocs.io/en/stable/api/core/Object3D_autogen.html#pythreejs.Object3D.position
https://pythreejs.readthedocs.io/en/stable/api/scenes/Scene_autogen.html#pythreejs.Scene
https://pythreejs.readthedocs.io/en/stable/api/renderers/webgl/WebGLBufferRenderer_autogen.html#pythreejs.WebGLBufferRenderer
https://pythreejs.readthedocs.io/en/stable/api/controls/OrbitControls_autogen.html#pythreejs.OrbitControls

Learn Multibody Dynamics

view_width = 600
view_height = 400

camera = p3js.PerspectiveCamera(position=[10.0, 10.0, 10.0],
aspect=view_width/view_height)

dir_light = p3js.DirectionalLight(position=[0.0, 10.0, 10.0])
ambient_light = p3js.AmbientLight()

axes = p3js.AxesHelper()
scene = p3js.Scene(children=[cyl_mesh, axes, camera, dir_light, ambient_light])
controller = p3js.OrbitControls(controlling=camera)
renderer = p3js.Renderer(camera=camera,

scene=scene,
controls=[controller],
width=view_width,
height=view_height)

Now display the scene by calling the renderer:

renderer

Renderer(camera=PerspectiveCamera(aspect=1.5, position=(10.0, 10.0, 10.0),␣
↪→projectionMatrix=(1.0, 0.0, 0.0, 0.…

18.3 Transformation Matrices

The location and orientation of any givenmesh is stored in its transformationmatrix. A transformationmatrix is commonly
used in graphics applications because it can describe the position, orientation, scaling, and skewing of a mesh of points.
A transformation matrix that only describes rotation and position takes this form:

T =

[
NCB 0̄
r̄P/O 1

]
T ∈ R4x4 (18.1)

Here the direction cosine matrix of a mesh B with respect to the scene’s global reference frame N is stored in the first
three rows and columns, the position vector to a reference point P fixed in the mesh relative to the scene’s origin point
O is stored in the first three columns of the bottom row. If there is no rotation or translation, the transformation matrix
becomes the identity matrix. This matrix is stored in the matrix attribute of the mesh:

cyl_mesh.matrix

(1.0,
0.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,

(continues on next page)

18.3. Transformation Matrices 245

https://en.wikipedia.org/wiki/Transformation_matrix
https://pythreejs.readthedocs.io/en/stable/api/core/Object3D_autogen.html#pythreejs.Object3D.matrix

Learn Multibody Dynamics

(continued from previous page)
0.0,
1.0)

Notice that the 4x4 matrix is stored “flattened” in a single list of 16 values.

len(cyl_mesh.matrix)

16

If you change this list to a NumPy array you can reshape() it and flatten() it to see the connection.

np.array(cyl_mesh.matrix).reshape(4, 4)

array([[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])

np.array(cyl_mesh.matrix).reshape(4, 4).flatten()

array([1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1.])

Each mesh/geometry has its own local coordinate system and origin. For the cylinder, the origin is at the geometric center
and the axis of the cylinder is aligned with its local Y axis. For our body A, we need the cylinder’s axis to align with our
âx vector. To solve this, we need to create a new reference frame in which its Y unit vector is aligned with the âx. I
introduce reference frame Ac for this purpose:

Ac = me.ReferenceFrame('Ac')
Ac.orient_axis(A, sm.pi/2, A.z)

Now we can create a transformation matrix for Ac and Ao. Ao aligns with the cylinder mesh’s origin and Ac aligns with
its coordinate system.

TA = sm.eye(4)
TA[:3, :3] = Ac.dcm(N)
TA[3, :3] = sm.transpose(Ao.pos_from(O).to_matrix(N))
TA

− sin (q1(t)) cos (q1(t)) 0 0
− cos (q1(t)) − sin (q1(t)) 0 0

0 0 1 0
l cos (q1(t))

2
l sin (q1(t))

2 0 1

 (18.2)

The B rod is already correctly aligned with the cylinder geometry’s local coordinate system so we do not need to
introduce a new reference frame for its transformation matrix.

TB = sm.eye(4)
TB[:3, :3] = B.dcm(N)
TB[3, :3] = sm.transpose(Bo.pos_from(O).to_matrix(N))
TB

246 Chapter 18. Three Dimensional Visualization

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flatten.html#numpy.ndarray.flatten

Learn Multibody Dynamics

cos (q1(t)) sin (q1(t)) 0 0

− sin (q1(t)) cos (q2(t)) cos (q1(t)) cos (q2(t)) sin (q2(t)) 0
sin (q1(t)) sin (q2(t)) − sin (q2(t)) cos (q1(t)) cos (q2(t)) 0

l cos (q1(t)) l sin (q1(t)) 0 1

 (18.3)

Lastly, we will introduce a sphere mesh to show the location of pointQ. We can choose any reference frame because a
sphere looks the same from all directions, but I choose to use theB frame here since we describe the point as sliding along
the rod B. This choice will play a role in making the local coordinate axes visualize a bit better in the final animations.

TQ = sm.eye(4)
TQ[:3, :3] = B.dcm(N)
TQ[3, :3] = sm.transpose(Q.pos_from(O).to_matrix(N))
TQ

cos (q1(t)) sin (q1(t)) 0 0

− sin (q1(t)) cos (q2(t)) cos (q1(t)) cos (q2(t)) sin (q2(t)) 0
sin (q1(t)) sin (q2(t)) − sin (q2(t)) cos (q1(t)) cos (q2(t)) 0

l cos (q1(t))− q3(t) sin (q1(t)) cos (q2(t)) l sin (q1(t)) + q3(t) cos (q1(t)) cos (q2(t)) q3(t) sin (q2(t)) 1

(18.4)

Now that we have symbolic transformation matrices, let’s flatten them all to be in the form that three.js needs:

TA = TA.reshape(16, 1)
TB = TB.reshape(16, 1)
TQ = TQ.reshape(16, 1)

TA

− sin (q1(t))
cos (q1(t))

0
0

− cos (q1(t))
− sin (q1(t))

0
0
0
0
1
0

l cos (q1(t))
2

l sin (q1(t))
2
0
1

(18.5)

Now create a function to numerically evaluate the transformation matrices given the generalized coordinates and con-
stants of the system:

eval_transform = sm.lambdify((q, p), (TA, TB, TQ))
eval_transform(q_vals, p_vals)

18.3. Transformation Matrices 247

Learn Multibody Dynamics

(array([[-0.42261826],
[0.90630779],
[0.],
[0.],
[-0.90630779],
[-0.42261826],
[0.],
[0.],
[0.],
[0.],
[1.],
[0.],
[0.27189234],
[0.12678548],
[0.],
[1.]]),

array([[0.90630779],
[0.42261826],
[0.],
[0.],
[-0.42101007],
[0.90285901],
[0.08715574],
[0.],
[0.03683361],
[-0.07898993],
[0.9961947],
[0.],
[0.54378467],
[0.25357096],
[0.],
[1.]]),

array([[0.90630779],
[0.42261826],
[0.],
[0.],
[-0.42101007],
[0.90285901],
[0.08715574],
[0.],
[0.03683361],
[-0.07898993],
[0.9961947],
[0.],
[0.50168367],
[0.34385686],
[0.00871557],
[1.]]))

Finally, create a list of lists for the transformation matrices at each time in ts, as this is the form needed for the animation
data below:

TAs = []
TBs = []
TQs = []

for xi in xs:

(continues on next page)

248 Chapter 18. Three Dimensional Visualization

Learn Multibody Dynamics

(continued from previous page)
TAi, TBi, TQi = eval_transform(xi[:3], p_vals)
TAs.append(TAi.squeeze().tolist())
TBs.append(TBi.squeeze().tolist())
TQs.append(TQi.squeeze().tolist())

Here are the first two numerical transformation matrices to see what we have created:

TAs[:2]

[[-0.42261826174069944,
0.9063077870366499,
0.0,
0.0,
-0.9063077870366499,
-0.42261826174069944,
0.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.27189233611099495,
0.12678547852220984,
0.0,
1.0],

[-0.4187739215332694,
0.9080905255775148,
0.0,
0.0,
-0.9080905255775148,
-0.4187739215332694,
0.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.2724271576732544,
0.12563217645998082,
0.0,
1.0]]

18.4 Geometry and Mesh Definitions

Create two cylinders for rods A and B and a sphere for particle Q:

rod_radius = p_vals[3]/20 # l/20
sphere_radius = p_vals[3]/16 # l/16

geom_A = p3js.CylinderGeometry(
radiusTop=rod_radius,
radiusBottom=rod_radius,
height=p_vals[3], # l

)
(continues on next page)

18.4. Geometry and Mesh Definitions 249

Learn Multibody Dynamics

(continued from previous page)

geom_B = p3js.CylinderGeometry(
radiusTop=rod_radius,
radiusBottom=rod_radius,
height=p_vals[3], # l

)

geom_Q = p3js.SphereGeometry(radius=sphere_radius)

Now create meshes for each body and add a material of a different color for each mesh. Each mesh will need a unique
name so that we can associate the animation information with the correct object. After the creation of the mesh set
matrixAutoUpdate to false so that we can manually specify the transformation matrix during the animation. Lastly,
add local coordinate axes to each mesh and set the transformation matrix to the initial configuration.

arrow_length = 0.2

mesh_A = p3js.Mesh(
geometry=geom_A,
material=p3js.MeshStandardMaterial(color='red'),
name='mesh_A',

)
mesh_A.matrixAutoUpdate = False
mesh_A.add(p3js.AxesHelper(arrow_length))
mesh_A.matrix = TAs[0]

mesh_B = p3js.Mesh(
geometry=geom_B,
material=p3js.MeshStandardMaterial(color='blue'),
name='mesh_B',

)
mesh_B.matrixAutoUpdate = False
mesh_B.add(p3js.AxesHelper(arrow_length))
mesh_B.matrix = TBs[0]

mesh_Q = p3js.Mesh(
geometry=geom_Q,
material=p3js.MeshStandardMaterial(color='green'),
name='mesh_Q',

)
mesh_Q.matrixAutoUpdate = False
mesh_Q.add(p3js.AxesHelper(arrow_length))
mesh_Q.matrix = TQs[0]

18.5 Scene Setup

Now create a scene and renderer similar to as we did earlier. Include the camera, lighting, coordinate axes, and all of the
meshes.

view_width = 600
view_height = 400

camera = p3js.PerspectiveCamera(position=[1.5, 0.6, 1],
up=[-1.0, 0.0, 0.0],
aspect=view_width/view_height)

(continues on next page)

250 Chapter 18. Three Dimensional Visualization

https://pythreejs.readthedocs.io/en/stable/api/core/Object3D_autogen.html#pythreejs.Object3D.matrixAutoUpdate

Learn Multibody Dynamics

(continued from previous page)

key_light = p3js.DirectionalLight(position=[0, 10, 10])
ambient_light = p3js.AmbientLight()

axes = p3js.AxesHelper()

children = [mesh_A, mesh_B, mesh_Q, axes, camera, key_light, ambient_light]

scene = p3js.Scene(children=children)

controller = p3js.OrbitControls(controlling=camera)
renderer = p3js.Renderer(camera=camera, scene=scene, controls=[controller],

width=view_width, height=view_height)

18.6 Animation Setup

three.js uses the concept of a “track” to track the data that changes over time for an animation. A VectorKeyframe-
Track can be used to associate time varying transformation matrices with a specific mesh. Create a track for each mesh.
Make sure that the name keyword argument matches the name of the mesh with this syntax: scene/<mesh name>.
matrix. The times and values keyword arguments hold the simulation time values and the list of transformation
matrices at each time, respectively.

track_A = p3js.VectorKeyframeTrack(
name="scene/mesh_A.matrix",
times=ts,
values=TAs

)

track_B = p3js.VectorKeyframeTrack(
name="scene/mesh_B.matrix",
times=ts,
values=TBs

)

track_Q = p3js.VectorKeyframeTrack(
name="scene/mesh_Q.matrix",
times=ts,
values=TQs

)

Now create an AnimationAction that links the tracks to a play/pause button and associates this with the scene.

tracks = [track_B, track_A, track_Q]
duration = ts[-1] - ts[0]
clip = p3js.AnimationClip(tracks=tracks, duration=duration)
action = p3js.AnimationAction(p3js.AnimationMixer(scene), clip, scene)

You can find more about setting up animations with pythreejs in their documentation:
https://pythreejs.readthedocs.io/en/stable/examples/Animation.html

18.6. Animation Setup 251

https://pythreejs.readthedocs.io/en/stable/api/animation/tracks/VectorKeyframeTrack_autogen.html#pythreejs.VectorKeyframeTrack
https://pythreejs.readthedocs.io/en/stable/api/animation/tracks/VectorKeyframeTrack_autogen.html#pythreejs.VectorKeyframeTrack
https://pythreejs.readthedocs.io/en/stable/api/animation/AnimationAction_autogen.html#pythreejs.AnimationAction
https://pythreejs.readthedocs.io/en/stable/examples/Animation.html

Learn Multibody Dynamics

18.7 Animated Interactive 3D Visualization

With the scene and animation now defined the renderer and the animation controls can be displayed with:

renderer

Renderer(camera=PerspectiveCamera(aspect=1.5, position=(1.5, 0.6, 1.0),␣
↪→projectionMatrix=(1.0, 0.0, 0.0, 0.0, …

action

AnimationAction(clip=AnimationClip(duration=10.0, tracks=(VectorKeyframeTrack(name=
↪→'scene/mesh_B.matrix', time…

The axes attached to the inertial reference frame and each mesh are the local coordinate system for that object. The X
axis is red, the Y axis is green, the Z axis is blue.
The animation can be used to confirm realistic motion of the multibody system and to visually explore the various motions
that can occur.

252 Chapter 18. Three Dimensional Visualization

CHAPTER

NINETEEN

EQUATIONS OF MOTION WITH NONHOLONOMIC CONSTRAINTS

Note: You can download this example as a Python script: nonholonomic-eom.py or Jupyter Notebook:
nonholonomic-eom.ipynb.

from IPython.display import HTML
from matplotlib.animation import FuncAnimation
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
import numpy as np
import sympy as sm
import sympy.physics.mechanics as me

me.init_vprinting(use_latex='mathjax')

class ReferenceFrame(me.ReferenceFrame):

def __init__(self, *args, **kwargs):

kwargs.pop('latexs', None)

lab = args[0].lower()
tex = r'\hat{{{}}}_{}'

super(ReferenceFrame, self).__init__(*args,
latexs=(tex.format(lab, 'x'),

tex.format(lab, 'y'),
tex.format(lab, 'z')),

**kwargs)
me.ReferenceFrame = ReferenceFrame

19.1 Learning Objectives

After completing this chapter readers will be able to:
• formulate the p dynamical differential equations for a nonholonomic system
• simulate a nonholonomic multibody system
• calculate trajectories of dependent speeds

253

Learn Multibody Dynamics

19.2 Introduction

In chapters, Holonomic Constraints and Nonholonomic Constraints, I introduced two types of constraints: holonomic
(configuration) constraints and nonholonomic (motion) constraints. Holonomic constraints are nonlinear constraints in
the coordinates1. Nonholonomic constraints are linear in the generalized speeds, by definition. We will address the
nonholonomic equations of motion first, as they are slightly easier to deal with.
Nonholonomic constraint equations are linear in both the independent and dependent generalized speeds (see Sec. Snake-
board). We have shown that you can explicitly solve for the dependent generalized speeds ūr as a function of the inde-
pendent generalized speeds ūs. This means that number of dynamical differential equations can be reduced to p from n
withm nonholonomic constraints. Recall that the nonholonomic constraints take this form:

f̄n(ūs, ūr, q̄, t) = Mnūr + ḡn = 0 ∈ Rm (19.1)

and ur can be solved for as so:

ūr = −Mn(q̄, t)
−1ḡn(ūs, q̄, t) (19.2)

which is the same as Eq. (12.58) we originally developed:

ūr = Anūs + b̄n (19.3)

Using Eq. (19.2) equation we can now write our equations of motion as n kinematical differential equations and p
dynamical differential equations.

f̄k(ūs, ˙̄q, q̄, t) = Mk ˙̄q + ḡk = 0 ∈ Rn

f̄d(˙̄us, ūs, q̄, t) = Md ˙̄us + ḡd = 0 ∈ Rp
(19.4)

and these can be written in explicit form:

˙̄q = −Mk(q̄, t)
−1ḡk(ūs, q̄, t)

˙̄us = −Md(q̄, t)
−1ḡd(ūs, q̄, t)

(19.5)

This leaves us with n + p equations of motion, instead of 2n equations seen in a holonomic system. Nonholonomic
constraints reduce the number of degrees of freedom and thus fewer dynamical differential equations are necessary to
fully describe the motion.

19.3 Snakeboard Equations of Motion

Let’s revisit the snakeboard example (see Sec. Snakeboard) and develop the equations of motion for that nonholonomic
system. This system only has nonholonomic constraints and we selected u1 and u2 as the dependent speeds. For simplicity,
we will assume that the mass and moments of inertia of the three bodies are the same.

19.3.1 1. Declare all the variables

First introduce the necessary variables; adding I for the central moment of inertia of each body and m as the mass of
each body. Then create column matrices for the various sets of variables.

1 They can be linear in the coordinates, but then there is little reason not to solve for the depedendent coordinates and eliminate them.

254 Chapter 19. Equations of Motion with Nonholonomic Constraints

Learn Multibody Dynamics

Fig. 19.1: Configuration diagram of a planar Snakeboard model.

q1, q2, q3, q4, q5 = me.dynamicsymbols('q1, q2, q3, q4, q5')
u1, u2, u3, u4, u5 = me.dynamicsymbols('u1, u2, u3, u4, u5')
l, I, m = sm.symbols('l, I, m')
t = me.dynamicsymbols._t

p = sm.Matrix([l, I, m])
q = sm.Matrix([q1, q2, q3, q4, q5])
us = sm.Matrix([u3, u4, u5])
ur = sm.Matrix([u1, u2])
u = ur.col_join(us)

q, ur, us, u, p

q1
q2
q3
q4
q5

 ,
[
u1
u2

]
,

u3u4
u5

 ,

u1
u2
u3
u4
u5

 ,
 lI
m

 (19.6)

We will also need column matrices for the time derivatives of each set of variables and some dictionaries to zero out
any of these variables in various expressions we create.

qd = q.diff()
urd = ur.diff(t)
usd = us.diff(t)

(continues on next page)

19.3. Snakeboard Equations of Motion 255

Learn Multibody Dynamics

(continued from previous page)
ud = u.diff(t)

qd, urd, usd, ud

q̇1
q̇2
q̇3
q̇4
q̇5

 ,
[
u̇1
u̇2

]
,

u̇3u̇4
u̇5

 ,

u̇1
u̇2
u̇3
u̇4
u̇5

 (19.7)

qd_zero = {qdi: 0 for qdi in qd}
ur_zero = {ui: 0 for ui in ur}
us_zero = {ui: 0 for ui in us}
urd_zero = {udi: 0 for udi in urd}
usd_zero = {udi: 0 for udi in usd}

qd_zero, ur_zero, us_zero

({q̇1 : 0, q̇2 : 0, q̇3 : 0, q̇4 : 0, q̇5 : 0} , {u1 : 0, u2 : 0} , {u3 : 0, u4 : 0, u5 : 0}) (19.8)

urd_zero, usd_zero

({u̇1 : 0, u̇2 : 0} , {u̇3 : 0, u̇4 : 0, u̇5 : 0}) (19.9)

19.3.2 2. Establish the kinematics

The following code sets up the orientations, positions, and velocities exactly as done in the original example. All of the
velocities are in terms of q̄ and ˙̄q.

N = me.ReferenceFrame('N')
A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')
C = me.ReferenceFrame('C')

A.orient_axis(N, q3, N.z)
B.orient_axis(A, q4, A.z)
C.orient_axis(A, q5, A.z)

A.ang_vel_in(N)
B.ang_vel_in(N)
C.ang_vel_in(N)

O = me.Point('O')

(continues on next page)

256 Chapter 19. Equations of Motion with Nonholonomic Constraints

Learn Multibody Dynamics

(continued from previous page)
Ao = me.Point('A_o')
Bo = me.Point('B_o')
Co = me.Point('C_o')

Ao.set_pos(O, q1*N.x + q2*N.y)
Bo.set_pos(Ao, l/2*A.x)
Co.set_pos(Ao, -l/2*A.x)

O.set_vel(N, 0)
Bo.v2pt_theory(Ao, N, A)
Co.v2pt_theory(Ao, N, A);

19.3.3 3. Specify the kinematical differential equations

Now create the n = 5 kinematical differential equations f̄k:

fk = sm.Matrix([
u1 - q1.diff(t),
u2 - q2.diff(t),
u3 - l*q3.diff(t)/2,
u4 - q4.diff(t),
u5 - q5.diff(t),

])

It is a good idea to use find_dynamicsymbols() to check which functions of time are present in the various
equations. This function is invaluable when the equations begin to become very large.

me.find_dynamicsymbols(fk)

{q1, q2, q3, q4, q5, u1, u2, u3, u4, u5, q̇1, q̇2, q̇3, q̇4, q̇5} (19.10)

Symbolically solve these equations for ˙̄q and setup a dictionary we can use for substitutions:

Mk = fk.jacobian(qd)
gk = fk.xreplace(qd_zero)
qd_sol = -Mk.LUsolve(gk)
qd_repl = dict(zip(qd, qd_sol))
qd_repl

{
q̇1 : u1, q̇2 : u2, q̇3 :

2u3
l
, q̇4 : u4, q̇5 : u5

}
(19.11)

19.3. Snakeboard Equations of Motion 257

https://docs.sympy.org/latest/modules/physics/mechanics/api/expr_manip.html#sympy.physics.mechanics.find_dynamicsymbols

Learn Multibody Dynamics

19.3.4 4. Establish the nonholonomic constraints

Create them = 2 nonholonomic constraints:

fn = sm.Matrix([Bo.vel(N).dot(B.y), Co.vel(N).dot(C.y)])
fn

[
l cos (q4)q̇3

2 + (− sin (q3) sin (q4) + cos (q3) cos (q4)) q̇2 + (− sin (q3) cos (q4)− sin (q4) cos (q3)) q̇1
− l cos (q5)q̇3

2 + (− sin (q3) sin (q5) + cos (q3) cos (q5)) q̇2 + (− sin (q3) cos (q5)− sin (q5) cos (q3)) q̇1

]
(19.12)

and rewrite them in terms of the generalized speeds:

fn = fn.xreplace(qd_repl)
fn

[
(− sin (q3) sin (q4) + cos (q3) cos (q4))u2 + (− sin (q3) cos (q4)− sin (q4) cos (q3))u1 + u3 cos (q4)
(− sin (q3) sin (q5) + cos (q3) cos (q5))u2 + (− sin (q3) cos (q5)− sin (q5) cos (q3))u1 − u3 cos (q5)

]
(19.13)

me.find_dynamicsymbols(fn)

{q3, q4, q5, u1, u2, u3} (19.14)

With the nonholonomic constraint equations we choose ūr = [u1 u2]
T and symbolically for these dependent speeds.

Mn = fn.jacobian(ur)
gn = fn.xreplace(ur_zero)
ur_sol = Mn.LUsolve(-gn)
ur_repl = dict(zip(ur, ur_sol))

In our case, the dependent generalized speeds are only a function of one independent generalized speed, u3.

me.find_dynamicsymbols(ur_sol)

{q3, q4, q5, u3} (19.15)

Exercise
Why does u1 and u2 not depend on q1, q2, u4 and u5?

Our kinematical differential equations can now be rewritten in terms of the independent generalized speeds. We only
need to rewrite ḡk for later use in our numerical functions.

gk = gk.xreplace(ur_repl)

me.find_dynamicsymbols(gk)

258 Chapter 19. Equations of Motion with Nonholonomic Constraints

Learn Multibody Dynamics

{q3, q4, q5, u3, u4, u5} (19.16)

19.3.5 5. Rewrite velocities in terms of independent speeds

The snakeboard model, as described, has no generalized active forces because there are no contributing external forces
acting on the system, so we only need to generate the nonholonomic generalized inertia forces F̃ ∗

r . We now then calculate
the velocities we will need to form F̃ ∗

r and make sure they are written only in terms of the independent generalized speeds.

N_w_A = A.ang_vel_in(N).xreplace(qd_repl).xreplace(ur_repl)
N_w_B = B.ang_vel_in(N).xreplace(qd_repl).xreplace(ur_repl)
N_w_C = C.ang_vel_in(N).xreplace(qd_repl).xreplace(ur_repl)
N_v_Ao = Ao.vel(N).xreplace(qd_repl).xreplace(ur_repl)
N_v_Bo = Bo.vel(N).xreplace(qd_repl).xreplace(ur_repl)
N_v_Co = Co.vel(N).xreplace(qd_repl).xreplace(ur_repl)

vels = (N_w_A, N_w_B, N_w_C, N_v_Ao, N_v_Bo, N_v_Co)

for vel in vels:
print(me.find_dynamicsymbols(vel, reference_frame=N))

{u3(t)}
{u3(t), u4(t)}
{u5(t), u3(t)}
{q3(t), q5(t), u3(t), q4(t)}
{q3(t), q5(t), u3(t), q4(t)}
{q3(t), q5(t), u3(t), q4(t)}

19.3.6 6. Compute the partial velocities

With the velocities only in terms of the independent generalized speeds, we can calculate the p nonholonomic partial
velocities:

w_A, w_B, w_C, v_Ao, v_Bo, v_Co = me.partial_velocity(vels, us, N)

19.3.7 7. Rewrite the accelerations in terms of the independent generalized speeds

We can also write the accelerations in terms of only the independent generalized speeds, their time derivatives, and the
generalized coordinates. To do so, we need to differentiate the nonholonomic constraints so that we can eliminate the
dependent generalized accelerations, ˙̄ur. Differentiating the constraints with respect to time and then substituting for the
dependent generalized speeds gives us equations for the dependent generalized accelerations.

˙̄fn(˙̄ur, ˙̄us, ūs, ūr, q̄, t) = Mnd ˙̄ur + ḡnd = 0 ∈ Rm

˙̄ur = −Mnd(q̄, t)
−1ḡnd(˙̄us, ūs, q̄, t)

(19.17)

First, time differentiate the nonholonomic constraints and eliminate the time derivatives of the generalized coordinates.

fnd = fn.diff(t).xreplace(qd_repl)

me.find_dynamicsymbols(fnd)

19.3. Snakeboard Equations of Motion 259

Learn Multibody Dynamics

{q3, q4, q5, u1, u2, u3, u4, u5, u̇1, u̇2, u̇3} (19.18)

Now solve for the dependent generalized accelerations. Note that I replace the dependent generalized speeds in
ḡnd instead of ˙̄fn earlier. This is to avoid replacing the u_1 and u_2 terms in the Derivative(u1, t) and
Derivative(u2, t) terms.

Mnd = fnd.jacobian(urd)
gnd = fnd.xreplace(urd_zero).xreplace(ur_repl)
urd_sol = Mnd.LUsolve(-gnd)
urd_repl = dict(zip(urd, urd_sol))

me.find_dynamicsymbols(urd_sol)

{q3, q4, q5, u3, u4, u5, u̇3} (19.19)

19.3.8 8. Create the generalized forces

Now we can form the inertia forces and inertia torques. First check what derivatives appear in the accelerations.

Rs_Ao = -m*Ao.acc(N)
Rs_Bo = -m*Bo.acc(N)
Rs_Co = -m*Co.acc(N)

(me.find_dynamicsymbols(Rs_Ao, reference_frame=N) |
me.find_dynamicsymbols(Rs_Bo, reference_frame=N) |
me.find_dynamicsymbols(Rs_Co, reference_frame=N))

{q1, q2, q3, q̈1, q̈2, q̇3, q̈3} (19.20)

We’ll need to replace the ¨̄q first and then the ˙̄q. Create the first replacement by differentiating the expressions for ˙̄q.

Warning: If you use chained replacements, e.g. .xreplace().xreplace().xreplace() you have
to be careful about the order of replacements so that you don’t substitute symbols inside a derivative, e.g.
Derivative(u, t). If you have expr = Derivative(u, t) + u then you need to replace the
entire derivative first: expr.xreplace({u.diff(): 1}).xreplace({u: 2}).

qdd_repl = {k.diff(t): v.diff(t).xreplace(urd_repl) for k, v in qd_repl.items()}

Rs_Ao = -m*Ao.acc(N).xreplace(qdd_repl).xreplace(qd_repl)
Rs_Bo = -m*Bo.acc(N).xreplace(qdd_repl).xreplace(qd_repl)
Rs_Co = -m*Co.acc(N).xreplace(qdd_repl).xreplace(qd_repl)

(me.find_dynamicsymbols(Rs_Ao, reference_frame=N) |
me.find_dynamicsymbols(Rs_Bo, reference_frame=N) |
me.find_dynamicsymbols(Rs_Co, reference_frame=N))

260 Chapter 19. Equations of Motion with Nonholonomic Constraints

Learn Multibody Dynamics

{q3, q4, q5, u3, u4, u5, u̇3} (19.21)

The motion is planar so the generalized inertia torques are simply angular accelerations dotted with the central inertia
dyadics.

I_A_Ao = I*me.outer(A.z, A.z)
I_B_Bo = I*me.outer(B.z, B.z)
I_C_Co = I*me.outer(C.z, C.z)

Now have a look at which functions are present in the inertia torques:

Ts_A = -A.ang_acc_in(N).dot(I_A_Ao)
Ts_B = -B.ang_acc_in(N).dot(I_B_Bo)
Ts_C = -C.ang_acc_in(N).dot(I_C_Co)

(me.find_dynamicsymbols(Ts_A, reference_frame=N) |
me.find_dynamicsymbols(Ts_B, reference_frame=N) |
me.find_dynamicsymbols(Ts_C, reference_frame=N))

{q3, q4, q5, q̈3, q̈4, q̈5} (19.22)

and eliminate the dependent generalized accelerations:

Ts_A = -A.ang_acc_in(N).dot(I_A_Ao).xreplace(qdd_repl)
Ts_B = -B.ang_acc_in(N).dot(I_B_Bo).xreplace(qdd_repl)
Ts_C = -C.ang_acc_in(N).dot(I_C_Co).xreplace(qdd_repl)

(me.find_dynamicsymbols(Ts_A, reference_frame=N) |
me.find_dynamicsymbols(Ts_B, reference_frame=N) |
me.find_dynamicsymbols(Ts_C, reference_frame=N))

{u3, u4, u5, u̇3, u̇4, u̇5} (19.23)

19.3.9 9. Formulate the dynamical differential equations

All of the components are present to formulate the nonholonomic generalized inertia forces. After we form them, make
sure they are only a function of the independent generalized speeds, their time derivatives, and the generalized coordinates.

Frs = []
for i in range(len(us)):

Frs.append(v_Ao[i].dot(Rs_Ao) + v_Bo[i].dot(Rs_Bo) + v_Co[i].dot(Rs_Co) +
w_A[i].dot(Ts_A) + w_B[i].dot(Ts_B) + w_C[i].dot(Ts_C))

Frs = sm.Matrix(Frs)

me.find_dynamicsymbols(Frs)

{q3, q4, q5, u3, u4, u5, u̇3, u̇4, u̇5} (19.24)

19.3. Snakeboard Equations of Motion 261

Learn Multibody Dynamics

At this point you may have noticed that q1 and q2 have not appeared in any equations. This means that the dynamics do
not depend on the planar location of the snakeboard. q1 and q2 are called ignorable coordinates if they do not appear in
the equations of motion. It is only coincidence that the time derivatives of these ignorable coordinates are equal to the to
dependent generalized speeds.
Lastly, extract the linear coefficients and the remainder for the dynamical differential equations.

Md = Frs.jacobian(usd)
gd = Frs.xreplace(usd_zero)

And one last time, check that Md and gd are only functions of the independent generalized speeds and the generalized
coordinates.

me.find_dynamicsymbols(Md)

{q3, q4, q5} (19.25)

me.find_dynamicsymbols(gd)

{q3, q4, q5, u3, u4, u5} (19.26)

We now haveMk, ḡk,Md and ḡd and can proceed to numerical evaluation.

19.4 Simulate the Snakeboard

We now move to numerical evaluation for the simulation. First, create a function that evaluates the matrices of the
equations of motion.

eval_kd = sm.lambdify((q, us, p), (Mk, gk, Md, gd), cse=True)

Now create a function that evaluates the right hand side of the explicit ordinary differential equations for use with
solve_ivp().

def eval_rhs(t, x, p):
"""Returns the time derivative of the states.

Parameters
==========
t : float
x : array_like, shape(8,)

x = [q1, q2, q3, q4, q5, u3, u4, u5]
p : array_like, shape(3,)

p = [l, I, m]

Returns
=======
xd : ndarray, shape(8,)

xd = [q1d, q2d, q3d, q4d, q5d, u3d, u4d, u5d]

(continues on next page)

262 Chapter 19. Equations of Motion with Nonholonomic Constraints

Learn Multibody Dynamics

(continued from previous page)
"""
q, us = x[:5], x[5:]

Mk, gk, Md, gd = eval_kd(q, us, p)

qd = -np.linalg.solve(Mk, gk.squeeze())
usd = -np.linalg.solve(Md, gd.squeeze())

return np.hstack((qd, usd))

Now introduce some numeric values for the constant parameters and the initial condition of the state. I’ve selected some
values here that will put the snakeboard in an initial state of motion.

p_vals = np.array([
0.7, # l [m]
0.1, # I [kg*m^2]
1.0, # m [kg]

])

q0 = np.array([
0.0, # q1 [m]
0.0, # q2 [m]
0.0, # q3 [rad]
np.deg2rad(5.0), # q4 [rad]
-np.deg2rad(5.0), # q5 [rad]

])

us0 = np.array([
0.1, # u3 [m/s]
0.01, # u4 [rad/s]
-0.01, # u5 [rad/s]

])

x0 = np.hstack((q0, us0))
p_vals, x0

(array([0.7, 0.1, 1.]),
array([0. , 0. , 0. , 0.08726646, -0.08726646,

0.1 , 0.01 , -0.01]))

Check whether eval_rhs() works with these arrays:

eval_rhs(1.0, x0, p_vals)

array([1.14300523, 0. , 0.28571429, 0.01 , -0.01 ,
0.01143537, -0.03267249, -0.03267249])

We can now integrate the equations of motion to find the state trajectories. I setup the time array for the solution to
correspond to 30 frames per second for later use in the animation of the motion.

t0, tf = 0.0, 8.0

fps = 20
ts = np.linspace(t0, tf, num=int(fps*(tf - t0)))

(continues on next page)

19.4. Simulate the Snakeboard 263

Learn Multibody Dynamics

(continued from previous page)
sol = solve_ivp(eval_rhs, (t0, tf), x0, args=(p_vals,), t_eval=ts)

xs = np.transpose(sol.y)

Now we can plot the state trajectories to see if there is realistic motion.

fig, axes = plt.subplots(2, 1, sharex=True)
fig.set_figwidth(10.0)

axes[0].plot(ts, xs[:, :2])
axes[0].legend(('q_1', 'q_2'))
axes[0].set_ylabel('Distance [m]')

axes[1].plot(ts, np.rad2deg(xs[:, 2:5]))
axes[1].legend(('q_3', 'q_4', 'q_5'))
axes[1].set_ylabel('Angle [deg]')
axes[1].set_xlabel('Time [s]');

We see that the x and y positions vary over several meters and that there is a sharp transition around about 7 seconds.
q3(t) shows that the primary angle of the snakeboard grows with time and does almost a full rotation. Plotting the path
on the ground plane of Ao gives a bit more insight to the motion.

fig, ax = plt.subplots()
fig.set_figwidth(10.0)

ax.plot(xs[:, 0], xs[:, 1])
ax.set_aspect('equal')
ax.set_xlabel('q_1 [m]')
ax.set_ylabel('q_2 [m]');

264 Chapter 19. Equations of Motion with Nonholonomic Constraints

Learn Multibody Dynamics

We see that the snakeboard curves to the left but eventually makes a very sharp trajectory change. An animation will
provide an even more clear idea of the motion of this nonholonomic system.

19.5 Animate the Snakeboard

We will animate the snakeboard as a collection of lines and points and animate the 2D motion with matplotlib. First,
create some new points that represent the location of the left and right wheels on bodies B and C.

Bl = me.Point('B_l')
Br = me.Point('B_r')
Cr = me.Point('C_r')
Cl = me.Point('C_l')

Bl.set_pos(Bo, -l/4*B.y)
Br.set_pos(Bo, l/4*B.y)
Cl.set_pos(Co, -l/4*C.y)
Cr.set_pos(Co, l/4*C.y)

Create a function that numerically evaluates the Cartesian coordinates of all the points wewant to plot given the generalized
coordinates.

coordinates = Cl.pos_from(O).to_matrix(N)
for point in [Co, Cr, Co, Ao, Bo, Bl, Br]:

coordinates = coordinates.row_join(point.pos_from(O).to_matrix(N))

(continues on next page)

19.5. Animate the Snakeboard 265

Learn Multibody Dynamics

(continued from previous page)
eval_point_coords = sm.lambdify((q, p), coordinates, cse=True)
eval_point_coords(q0, p_vals)

array([[-0.36525225, -0.35 , -0.33474775, -0.35 , 0. ,
0.35 , 0.36525225, 0.33474775],

[-0.17433407, -0. , 0.17433407, -0. , 0. ,
0. , -0.17433407, 0.17433407],

[0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0.]])

Now create a plot of the initial configuration:

x, y, z = eval_point_coords(q0, p_vals)

fig, ax = plt.subplots()
fig.set_size_inches((10.0, 10.0))
ax.set_aspect('equal')

lines, = ax.plot(x, y, color='black',
marker='o', markerfacecolor='blue', markersize=10)

some empty lines to use for the wheel paths
bl_path, = ax.plot([], [])
br_path, = ax.plot([], [])
cl_path, = ax.plot([], [])
cr_path, = ax.plot([], [])

title_template = 'Time = {:1.2f} s'
title_text = ax.set_title(title_template.format(t0))
ax.set_xlim((np.min(xs[:, 0]) - 0.5, np.max(xs[:, 0]) + 0.5))
ax.set_ylim((np.min(xs[:, 1]) - 0.5, np.max(xs[:, 1]) + 0.5))
ax.set_xlabel('x [m]')
ax.set_ylabel('y [m]');

266 Chapter 19. Equations of Motion with Nonholonomic Constraints

Learn Multibody Dynamics

And, finally, animate the motion:

19.5. Animate the Snakeboard 267

Learn Multibody Dynamics

coords = []
for xi in xs:

coords.append(eval_point_coords(xi[:5], p_vals))
coords = np.array(coords) # shape(600, 3, 8)

def animate(i):
title_text.set_text(title_template.format(sol.t[i]))
lines.set_data(coords[i, 0, :], coords[i, 1, :])
cl_path.set_data(coords[:i, 0, 0], coords[:i, 1, 0])
cr_path.set_data(coords[:i, 0, 2], coords[:i, 1, 2])
bl_path.set_data(coords[:i, 0, 6], coords[:i, 1, 6])
br_path.set_data(coords[:i, 0, 7], coords[:i, 1, 7])

ani = FuncAnimation(fig, animate, len(sol.t))

HTML(ani.to_jshtml(fps=fps))

<IPython.core.display.HTML object>

19.6 Calculating Dependent Speeds

Since we have eliminated the dependent generalized speeds (u1 and u2) from the equations of motion, these are not
computed from solve_ivp(). If these are needed, it is possible to calculate them using the constraint equations. Here
I loop through time to calculate ūr at each time step and then plot the results.

x = sm.Matrix([q1, q2, q3, q4, q5, u3, u4, u5])
eval_ur = sm.lambdify((x, p), ur_sol, cse=True)

ur_vals = []
for xi in xs:

ur_vals.append(eval_ur(xi, p_vals))
ur_vals = np.array(ur_vals).squeeze()

fig, ax = plt.subplots()
fig.set_figwidth(10.0)
ax.plot(ts, ur_vals)
ax.set_ylabel('Speed [m/s]')
ax.set_xlabel('Time [s]')
ax.legend(['u_1', 'u_2']);

268 Chapter 19. Equations of Motion with Nonholonomic Constraints

Learn Multibody Dynamics

19.6. Calculating Dependent Speeds 269

Learn Multibody Dynamics

270 Chapter 19. Equations of Motion with Nonholonomic Constraints

CHAPTER

TWENTY

EQUATIONS OF MOTION WITH HOLONOMIC CONSTRAINTS

Note: You can download this example as a Python script: holonomic-eom.py or Jupyter Notebook:
holonomic-eom.ipynb.

from IPython.display import HTML
from matplotlib.animation import FuncAnimation
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
import numpy as np
import sympy as sm
import sympy.physics.mechanics as me

me.init_vprinting(use_latex='mathjax')

class ReferenceFrame(me.ReferenceFrame):

def __init__(self, *args, **kwargs):

kwargs.pop('latexs', None)

lab = args[0].lower()
tex = r'\hat{{{}}}_{}'

super(ReferenceFrame, self).__init__(*args,
latexs=(tex.format(lab, 'x'),

tex.format(lab, 'y'),
tex.format(lab, 'z')),

**kwargs)
me.ReferenceFrame = ReferenceFrame

20.1 Learning Objectives

After completing this chapter readers will be able to:
• formulate the differential algebraic equations of motion for a multibody system that includes additional holonomic
constraints

• simulate a system with additional constraints using a differential algebraic equation integrator
• compare simulation results that do and do not manage constraint drift

271

Learn Multibody Dynamics

20.2 Introduction

When there are holonomic constraints present the equations of motion are comprised of the kinematical differential
equations f̄k = 0, dynamical differential equations f̄d = 0, and the holonomic constraint equations f̄h = 0. This set of
equations are called differential algebraic equations and the algebraic equations cannot be solved for explicitly, as we did
with the nonholonomic algebraic constraint equations.
In a system such as this, there are N = n +M total coordinates, with n generalized coordinates q̄ and M additional
dependent coordinates q̄r. The holonomic constraints take this form:

f̄h(q̄, q̄r, t) = 0 ∈ RM (20.1)

n generalized speeds ū andM dependent speeds ūr can be introduced using N kinematical differential equations.

f̄k(˙̄q, ˙̄qr, ū, ūr, q̄, q̄r, t) = 0 ∈ RN (20.2)

We can formulate the equations ofmotion by transforming the holonomic constraints into a function of generalized speeds.
These equations are then treated just like nonholonomic constraints described in the previous Chp. Equations of Motion
with Nonholonomic Constraints.

˙̄fh(ū, ūr, q̄, q̄r, t) = Mhdūr + ḡhd = 0 ∈ RM (20.3)

We can solve forM dependent generalized speeds:

ūr = −M−1
hd ḡhd ∈ RM (20.4)

and then rewrite the kinematical and dynamical differential equations in terms of the generalized speeds, their time
derivatives, the generalized coordinates, and the dependent coordinates.

f̄k(˙̄q, ˙̄qr, ū, q̄, q̄r, t) = 0 ∈ RN

f̄d(˙̄u, ū, q̄, q̄r, t) = 0 ∈ Rn
(20.5)

This final set of equations hasN +n state variables and can be integrated as a set of ordinary differential equations or the
N + n+M equations can be integrated as a set of differential algebraic equations. We will demonstrate the differences
in the results for the two approaches.

20.3 Four-bar Linkage Equations of Motion

To demonstrate the formulation of the equations of motion of a system with an explicit holonomic constraints, let’s revisit
the four-bar linkage from Sec. Four-Bar Linkage. We will now make P2 and P3 particles, each with massm and include
the effects of gravity in the −n̂y direction.
As before, we setup the system by disconnecting the kinematic loop at point P4 and then use this open loop to derive
equations for the holonomic constraints that close the loop.

20.3.1 1. Declare all of the variables

We have three coordinates, only one of which is a generalized coordinate. I use q to hold the single generalized coordinate,
qr for the two dependent coordinates, and qN to hold all the coordinates; similarly for the generalized speeds.

272 Chapter 20. Equations of Motion with Holonomic Constraints

https://en.wikipedia.org/wiki/Differential-algebraic_system_of_equations

Learn Multibody Dynamics

Fig. 20.1: a) Shows four links in a plane A, B, C, and N with respective lengths la, lb, lc, ln connected in a closed loop
at points P1, P2, P3, P4. b) Shows the same linkage that has been separated at point P4 to make it an open chain of links.

q1, q2, q3 = me.dynamicsymbols('q1, q2, q3')
u1, u2, u3 = me.dynamicsymbols('u1, u2, u3')
la, lb, lc, ln = sm.symbols('l_a, l_b, l_c, l_n')
m, g = sm.symbols('m, g')
t = me.dynamicsymbols._t

p = sm.Matrix([la, lb, lc, ln, m, g])

q = sm.Matrix([q1])
qr = sm.Matrix([q2, q3])
qN = q.col_join(qr)

u = sm.Matrix([u1])
ur = sm.Matrix([u2, u3])
uN = u.col_join(ur)

qdN = qN.diff(t)
ud = u.diff(t)

p, q, qr, qN, u, ur, uN, qdN, ud

la
lb
lc
ln
m
g

 ,
[
q1
]
,

[
q2
q3

]
,

q1q2
q3

 , [u1] , [u2u3
]
,

u1u2
u3

 ,
q̇1q̇2
q̇3

 , [u̇1]
 (20.6)

ur_zero = {ui: 0 for ui in ur}
uN_zero = {ui: 0 for ui in uN}
qdN_zero = {qdi: 0 for qdi in qdN}
ud_zero = {udi: 0 for udi in ud}

20.3. Four-bar Linkage Equations of Motion 273

Learn Multibody Dynamics

20.3.2 2. Setup the open loop kinematics and holonomic constraints

Start by defining the orientation of the reference frames and positions of the points in terms of the N = 3 coordinates,
leaving P4 unconstrained.

N = me.ReferenceFrame('N')
A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')
C = me.ReferenceFrame('C')

A.orient_axis(N, q1, N.z)
B.orient_axis(A, q2, A.z)
C.orient_axis(B, q3, B.z)

P1 = me.Point('P1')
P2 = me.Point('P2')
P3 = me.Point('P3')
P4 = me.Point('P4')

P2.set_pos(P1, la*A.x)
P3.set_pos(P2, lb*B.x)
P4.set_pos(P3, lc*C.x)

20.3.3 3. Create the holonomic constraints

NowM = 2 holonomic constraints can be found by closing the loop.

loop = P4.pos_from(P1) - ln*N.x

fh = sm.Matrix([loop.dot(N.x), loop.dot(N.y)])
fh = sm.trigsimp(fh)
fh

[
la cos (q1) + lb cos (q1 + q2) + lc cos (q1 + q2 + q3)− ln
la sin (q1) + lb sin (q1 + q2) + lc sin (q1 + q2 + q3)

]
(20.7)

Warning: Be careful about using trigsimp() on larger problems, as it can really slow down the calculations. It
is not necessary to use, but I do so here so that the resulting equations are human readable in this context.

Note that these constraints are only a function of the N coordinates, not their time derivatives.

me.find_dynamicsymbols(fh)

{q1, q2, q3} (20.8)

274 Chapter 20. Equations of Motion with Holonomic Constraints

https://docs.sympy.org/latest/modules/simplify/simplify.html#sympy.simplify.trigsimp.trigsimp

Learn Multibody Dynamics

20.3.4 4. Specify the kinematical differential equations

Use simple definitions for the generalized speed u1 and the dependent speeds u2 and u3. We create N = 3 generalized
speeds even though the degrees of freedom are n = 1.

fk = sm.Matrix([
q1.diff(t) - u1,
q2.diff(t) - u2,
q3.diff(t) - u3,

])
Mk = fk.jacobian(qdN)
gk = fk.xreplace(qdN_zero)
qdN_sol = -Mk.LUsolve(gk)
qd_repl = dict(zip(qdN, qdN_sol))
qd_repl

{q̇1 : u1, q̇2 : u2, q̇3 : u3} (20.9)

20.3.5 5. Solve for the dependent speeds

Differentiate the holonomic constraints with respect to time to arrive at a motion constraint. This is equivalent to setting
N v̄P4 = 0.

fhd = fh.diff(t).xreplace(qd_repl)
fhd = sm.trigsimp(fhd)
fhd

[
−lau1 sin (q1)− lb (u1 + u2) sin (q1 + q2)− lc (u1 + u2 + u3) sin (q1 + q2 + q3)
lau1 cos (q1) + lb (u1 + u2) cos (q1 + q2) + lc (u1 + u2 + u3) cos (q1 + q2 + q3)

]
(20.10)

These holonomic motion constraints are functions of the coordinates and speeds.

me.find_dynamicsymbols(fhd)

{q1, q2, q3, u1, u2, u3} (20.11)

Choose u2 and u3 as the dependent speeds and solve the linear equations for these dependent speeds.

Mhd = fhd.jacobian(ur)
ghd = fhd.xreplace(ur_zero)
ur_sol = sm.trigsimp(-Mhd.LUsolve(ghd))
ur_repl = dict(zip(ur, ur_sol))
ur_repl[u2]

−lau1 sin (q1)− la(lb sin (q2)+lc sin (q2+q3))u1 sin (q1+q2+q3)
lb sin (q3) − lbu1 sin (q1 + q2)− lcu1 sin (q1 + q2 + q3)

lb sin (q1 + q2) + lc sin (q1 + q2 + q3)
(20.12)

20.3. Four-bar Linkage Equations of Motion 275

Learn Multibody Dynamics

ur_repl[u3]

la (lb sin (q2) + lc sin (q2 + q3))u1
lblc sin (q3)

(20.13)

20.3.6 6. Write velocities in terms of the generalized speeds

We have three simple rotations and we can write the three angular velocities only in terms of u1 by using the expressions
for the independent speeds from the previous step.

A.set_ang_vel(N, u1*N.z)
B.set_ang_vel(A, ur_repl[u2]*A.z)
C.set_ang_vel(B, ur_repl[u3]*B.z)

Now, by using the two point velocity theorem the velocities of each point will also only be in terms of u1.

P1.set_vel(N, 0)
P2.v2pt_theory(P1, N, A)
P3.v2pt_theory(P2, N, B)
P4.v2pt_theory(P3, N, C)

(me.find_dynamicsymbols(P2.vel(N), reference_frame=N) |
me.find_dynamicsymbols(P3.vel(N), reference_frame=N) |
me.find_dynamicsymbols(P4.vel(N), reference_frame=N))

{q1, q2, q3, u1} (20.14)

We’ll also need the kinematical differential equations only in terms of the one generalized speed u1, so replace the
dependent speeds in ḡk.

gk = gk.xreplace(ur_repl)

20.3.7 7. Form the generalized active forces

We have a holonomic system so the number of degrees of freedom is n = 1. There are two particles that move and
gravity acts on each of them, as a contributing force. The resultant contributing forces on each of the particles are:

R_P2 = -m*g*N.y
R_P3 = -m*g*N.y

The partial velocities of each particle are easily found for the single generalized speed and F̄r is:

Fr = sm.Matrix([
P2.vel(N).diff(u1, N).dot(R_P2) + P3.vel(N).diff(u1, N).dot(R_P3)

])
Fr

276 Chapter 20. Equations of Motion with Holonomic Constraints

Learn Multibody Dynamics

[
−2glam cos (q1)− glbm

(
1 +

−la sin (q1)−
la(lb sin (q2)+lc sin (q2+q3)) sin (q1+q2+q3)

lb sin (q3)
−lb sin (q1+q2)−lc sin (q1+q2+q3)

lb sin (q1+q2)+lc sin (q1+q2+q3)

)
(− sin (q1) sin (q2) + cos (q1) cos (q2))

]
(20.15)

Check to make sure our generalized active forces do not contain dependent speeds.

me.find_dynamicsymbols(Fr)

{q1, q2, q3} (20.16)

20.3.8 8. Form the generalized inertia forces

To calculate the generalized inertia forces we need the acceleration of each particle. These should be only functions of
u̇1, u1, and the three coordinates. For P2, that is already true:

me.find_dynamicsymbols(P2.acc(N), reference_frame=N)

{q1, u1, u̇1} (20.17)

but for P3 we need to make some substitutions:

me.find_dynamicsymbols(P3.acc(N), reference_frame=N)

{q1, q2, q3, u1, q̇1, q̇2, q̇3, u̇1} (20.18)

Knowing that, the inertia resultants can be written as:

Rs_P2 = -m*P2.acc(N)
Rs_P3 = -m*P3.acc(N).xreplace(qd_repl).xreplace(ur_repl)

and the generalized inertia forces can be formed and we can make sure they are not functions of the dependent speeds.

Frs = sm.Matrix([
P2.vel(N).diff(u1, N).dot(Rs_P2) + P3.vel(N).diff(u1, N).dot(Rs_P3)

])
me.find_dynamicsymbols(Frs)

{q1, q2, q3, u1, u̇1} (20.19)

20.3. Four-bar Linkage Equations of Motion 277

Learn Multibody Dynamics

20.3.9 9. Equations of motion

Finally, the matrix form of dynamical differential equations is found as we have done before.

Md = Frs.jacobian(ud)
gd = Frs.xreplace(ud_zero) + Fr

And we can check to make sure the dependent speeds have been eliminated.

me.find_dynamicsymbols(Mk), me.find_dynamicsymbols(gk)

({} , {q1, q2, q3, u1}) (20.20)

me.find_dynamicsymbols(Md), me.find_dynamicsymbols(gd)

({q1, q2, q3} , {q1, q2, q3, u1}) (20.21)

20.4 Simulate without constraint enforcement

The equations of motion are functions of all three coordinates, yet two of them are dependent on the other. For the
evaluation of the right hand side of the equations to be valid, the coordinates must satisfy the holonomic constraints.
As presented, Eqs. (20.5) only contain the constraints that the velocity and acceleration of point P4 must be zero, but
the position constraint is not explicitly present. Neglecting the position constraint will cause numerical issues during
integration, as we will see.
Create an eval_rhs(t, x, p) as we have done before, noting that f̄d ∈ R1.

eval_k = sm.lambdify((qN, u, p), (Mk, gk))
eval_d = sm.lambdify((qN, u, p), (Md, gd))

def eval_rhs(t, x, p):
"""Return the derivative of the state at time t.

Parameters
==========
t : float
x : array_like, shape(4,)

x = [q1, q2, q3, u1]
p : array_like, shape(6,)

p = [la, lb, lc, ln, m, g]

Returns
=======
xd : ndarray, shape(4,)

xd = [q1d, q2d, q3d, u1d]

(continues on next page)

278 Chapter 20. Equations of Motion with Holonomic Constraints

Learn Multibody Dynamics

(continued from previous page)
"""

qN = x[:3] # shape(3,)
u = x[3:] # shape(1,)

Mk, gk = eval_k(qN, u, p)
qNd = -np.linalg.solve(Mk, np.squeeze(gk))

Md, gd, and ud are each shape(1,1)
Md, gd = eval_d(qN, u, p)
ud = -np.linalg.solve(Md, gd)[0]

return np.hstack((qNd, ud))

Here I select some feasible bar lengths. See the section on the Grashof condition to learn more about selecting lengths in
four-bar linkages.

p_vals = np.array([
0.8, # la [m]
2.0, # lb [m]
1.0, # lc [m]
2.0, # ln [m]
1.0, # m [kg]
9.81, # g [m/s^2]

])

Now we need to generate coordinates that are consistent with the constraints. f̄h is nonlinear in all of the coordinates.
We can solve these equations for the dependent coordinates using numerical root finding methods. SciPy’s fsolve()
function is capable of finding the roots for sets of nonlinear equations, given a good guess.
We’ll import fsolve directly like so:

from scipy.optimize import fsolve

fsolve() requires a function that evaluates expressions that equal to zero and a guess for the roots of that function, at
a minimum. Nonlinear functions will most certianly have multiple solutions for its roots and fsolve() will converge
to one of the solutions. The better the provided the guess the more likely it will converge on the desired solution. Our
function should evaluate the holonomic constraints given the dependent coordinates. We can use lambdify() to create
this function. I make the first argument q̄r because these are the values we want to solve for using fsolve().

eval_fh = sm.lambdify((qr, q1, p), fh)

Now select a desired value for the generalized coordinate q1 and guesses for q2 and q3.

q1_val = np.deg2rad(10.0)
qr_guess = np.deg2rad([10.0, -150.0])

eval_fh() returns a 2x1 array so a lambda function is used to squeeze the output. q2 and q3 that satisfy the constraints
are then found with:

q2_val, q3_val = fsolve(
lambda qr, q1, p: np.squeeze(eval_fh(qr, q1, p)), # squeeze to a 1d array
qr_guess, # initial guess for q2 and q3
args=(q1_val, p_vals)) # known values in fh

Now we have values of the coordinates that satisfy the constraints.

20.4. Simulate without constraint enforcement 279

https://en.wikipedia.org/wiki/Four-bar_linkage#Grashof_condition
https://en.wikipedia.org/wiki/Root-finding_algorithms
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html#scipy.optimize.fsolve

Learn Multibody Dynamics

qN_vals = np.array([q1_val, q2_val, q3_val])
np.rad2deg(qN_vals)

array([10. , 6.57526576, -151.3836336])

We can check that they return zero (or better stated as within fsolve()’s tolerance):

eval_fh(qN_vals[1:], qN_vals[0], p_vals)

array([[-2.44249065e-14],
[5.88751270e-13]])

Exercise
There are most often multiple solutions for the dependent coordinates for a given value of the dependent coordinates.
What are the other possible solutions for these parameter values?

Now that we have consistent coordinates, the initial state vector can be created. We will start at an initial state of rest with
u1(t0) = 0.

u1_val = 0.0
x0 = np.hstack((qN_vals, u1_val))
x0

array([0.17453293, 0.11476004, -2.64214284, 0.])

We will integrate over 30 seconds to show how the constraints hold up over a longer period of time.

t0, tf, fps = 0.0, 30.0, 20

With consistent coordinates the initial conditions can be set and eval_rhs() tested.

eval_rhs(t0, x0, p_vals)

array([0. , -0. , -0. , -9.4688079])

At every time step in the simulation the holonomic constraints should be satisfied. To check this we will need to evaluate
the constraints f̄h at each time step. The following function does this and returns the constraint residuals at each time
step.

def eval_constraints(xs, p):
"""Returns the value of the left hand side of the holonomic constraints
at each time instance.

Parameters
==========
xs : ndarray, shape(n, 4)

States at each of n time steps.
p : ndarray, shape(6,)

Constant parameters.

Returns
=======
con : ndarray, shape(n, 2)

(continues on next page)

280 Chapter 20. Equations of Motion with Holonomic Constraints

Learn Multibody Dynamics

(continued from previous page)
fh evaluated at each xi in xs.

"""
con = []
for xi in xs: # xs is shape(n, 4)

con.append(eval_fh(xi[1:3], xi[0], p).squeeze())
return np.array(con)

The dependent initial conditions need to be solved before each simulation and the constraints evaluated, so it will be helpful
to package this process into a reusable function. The following function takes the simulation parameters and returns the
simulation results. I have set the integration tolerances explicitly as rtol=1e-3 and atol=1e-6. These happen to
be the default tolerances for solve_ivp() and we will use three different approaches and we want to make sure the
tolerances are set the same for each integration so we can fairly compare the results.

def simulate(eval_rhs, t0, tf, fps, q1_0, u1_0, q2_0g, q3_0g, p):
"""Returns the simulation results.

Parameters
==========
eval_rhs : function

Function that returns the derivatives of the states in the form:
``eval_rhs(t, x, p)``.

t0 : float
Initial time in seconds.

tf : float
Final time in seconds.

fps : integer
Number of "frames" per second to output.

q1_0 : float
Initial q1 angle in radians.

u1_0 : float
Initial u1 rate in radians/s.

q2_0g : float
Guess for the initial q2 angle in radians.

q3_0g : float
Guess for the initial q3 angle in radians.

p : array_like, shape(6,)
Constant parameters p = [la, lb, lc, ln, m, g].

Returns
=======
ts : ndarray, shape(n,)

Time values.
xs : ndarray, shape(n, 4)

State values at each time.
con : ndarray, shape(n, 2)

Constraint violations at each time in meters.

"""

generate the time steps
ts = np.linspace(t0, tf, num=int(fps*(tf - t0)))

solve for the dependent coordinates
q2_val, q3_val = fsolve(

lambda qr, q1, p: np.squeeze(eval_fh(qr, q1, p)),

(continues on next page)

20.4. Simulate without constraint enforcement 281

Learn Multibody Dynamics

(continued from previous page)
[q2_0g, q3_0g],
args=(q1_0, p))

establish the initial conditions
x0 = np.array([q1_val, q2_val, q3_val, u1_0])

integrate the equations of motion
sol = solve_ivp(eval_rhs, (ts[0], ts[-1]), x0, args=(p,), t_eval=ts,

rtol=1e-3, atol=1e-6)
xs = np.transpose(sol.y)
ts = sol.t

evaluate the constraints
con = eval_constraints(xs, p)

return ts, xs, con

Similarly, create a function that can be reused for plotting the state trajectories and the constraint residuals.

def plot_results(ts, xs, con):
"""Returns the array of axes of a 4 panel plot of the state trajectory
versus time.

Parameters
==========
ts : array_like, shape(n,)

Values of time.
xs : array_like, shape(n, 4)

Values of the state trajectories corresponding to ``ts`` in order
[q1, q2, q3, u1].

con : array_like, shape(n, 2)
x and y constraint residuals of P4 at each time in ``ts``.

Returns
=======
axes : ndarray, shape(3,)

Matplotlib axes for each panel.

"""
fig, axes = plt.subplots(3, 1, sharex=True)

fig.set_size_inches((10.0, 6.0))

axes[0].plot(ts, np.rad2deg(xs[:, :3])) # q1(t), q2(t), q3(t)
axes[1].plot(ts, np.rad2deg(xs[:, 3])) # u1(t)
axes[2].plot(ts, np.squeeze(con)) # fh(t)

axes[0].legend(['q_1', 'q_2', 'q_3'])
axes[1].legend(['u_1'])
axes[2].legend([r'$\cdot\hat{n}_x$', r'$\cdot\hat{n}_y$'])

axes[0].set_ylabel('Angle [deg]')
axes[1].set_ylabel('Angular Rate [deg/s]')
axes[2].set_ylabel('Distance [m]')
axes[2].set_xlabel('Time [s]')

fig.tight_layout()
(continues on next page)

282 Chapter 20. Equations of Motion with Holonomic Constraints

Learn Multibody Dynamics

(continued from previous page)

return axes

With the functions in place we can simulate the system and plot the results.

ts, xs, con = simulate(
eval_rhs,
t0=t0,
tf=tf,
fps=fps,
q1_0=np.deg2rad(10.0),
u1_0=0.0,
q2_0g=np.deg2rad(10.0),
q3_0g=np.deg2rad(-150.0),
p=p_vals,

)
plot_results(ts, xs, con);

At first glance, the linkage seems to simulate fine with realistic angle values and angular rates. The motion is periodic
but looking closely, for example at u1(t), you can see that the angular rate changes in each successive period. The last
graph shows the holonomic constraint residuals across time. This graph shows that the constraints are satisfied at the
beginning of the simulation but that the residuals grow over time. This accumulation of error grows as large as 8 cm near
the end of the simulation. The drifting constraint residuals are the cause of the variations of motion among the oscillation
periods. Tighter integration tolerances can reduce the drifting constraint residuals, but that will come at an unnecessary
computational cost and not fully solve the issue.
The effect of the constraints not staying satisfied throughout the simulation can also be seen if the system is animated.

20.4. Simulate without constraint enforcement 283

Learn Multibody Dynamics

20.5 Animate the Motion

We’ll animate the four bar linkage multiple times so it is useful to create some functions to for the repeated use. Start by
creating a function that evaluates the point locations, as we have done before.

coordinates = P2.pos_from(P1).to_matrix(N)
for point in [P3, P4, P1, P2]:

coordinates = coordinates.row_join(point.pos_from(P1).to_matrix(N))
eval_point_coords = sm.lambdify((qN, p), coordinates)

Now create a function that plots the initial configuration of the linkage and returns any objects we may need in the
animation code.

def setup_animation_plot(ts, xs, p):
"""Returns objects needed for the animation.

Parameters
==========
ts : array_like, shape(n,)

Values of time.
xs : array_like, shape(n, 4)

Values of the state trajectories corresponding to ``ts`` in order
[q1, q2, q3, u1].

p : array_like, shape(6,)

"""

x, y, z = eval_point_coords(xs[0, :3], p)

fig, ax = plt.subplots()
fig.set_size_inches((10.0, 10.0))
ax.set_aspect('equal')
ax.grid()

lines, = ax.plot(x, y, color='black',
marker='o', markerfacecolor='blue', markersize=10)

title_text = ax.set_title('Time = {:1.1f} s'.format(ts[0]))
ax.set_xlim((-1.0, 3.0))
ax.set_ylim((-1.0, 1.0))
ax.set_xlabel('x [m]')
ax.set_ylabel('y [m]')

return fig, ax, title_text, lines

setup_animation_plot(ts, xs, p_vals);

284 Chapter 20. Equations of Motion with Holonomic Constraints

Learn Multibody Dynamics

Now we can create a function that initializes the plot, runs the animation and displays the results in Jupyter.

def animate_linkage(ts, xs, p):
"""Returns an animation object.

Parameters
==========
ts : array_like, shape(n,)
xs : array_like, shape(n, 4)

x = [q1, q2, q3, u1]
p : array_like, shape(6,)

p = [la, lb, lc, ln, m, g]

"""
setup the initial figure and axes
fig, ax, title_text, lines = setup_animation_plot(ts, xs, p)

precalculate all of the point coordinates
coords = []
for xi in xs:

coords.append(eval_point_coords(xi[:3], p))
coords = np.array(coords)

define the animation update function
def update(i):

title_text.set_text('Time = {:1.1f} s'.format(ts[i]))
lines.set_data(coords[i, 0, :], coords[i, 1, :])

close figure to prevent premature display
plt.close()

create and return the animation
return FuncAnimation(fig, update, len(ts))

Now, keep an eye on P4 during the animation of the simulation.

20.5. Animate the Motion 285

Learn Multibody Dynamics

HTML(animate_linkage(ts, xs, p_vals).to_jshtml(fps=fps))

<IPython.core.display.HTML object>

20.6 Correct Dependent Coordinates

Above we are relying on the integration of the differential equations to generate the coordinates. Because there is ac-
cumulated integration error in each state and nothing is enforcing the constraint among the coordinates, the constraint
residuals grow with time and the point P4 drifts from its actual location. One possible way to address this is to correct the
dependent coordinates at each evaluation of the state derivatives. We can use fsolve() to do so, in the same way we
solved for the initial conditions. Below, I force the dependent coordinates to satisfy the constraints to the default tolerance
of fsolve() as the first step in eval_rhs().

def eval_rhs_fsolve(t, x, p):
"""Return the derivative of the state at time t.

Parameters
==========
t : float
x : array_like, shape(4,)

x = [q1, q2, q3, u1]
p : array_like, shape(6,)

p = [la, lb, lc, ln, m, g]

Returns
=======
xd : ndarray, shape(4,)

xd = [q1d, q2d, q3d, u1d]

Notes
=====

Includes a holonomic constraint correction.

"""
qN = x[:3]
u = x[3:]

correct the dependent coordinates
qN[1:] = fsolve(lambda qr, q1, p: np.squeeze(eval_fh(qr, q1, p)),

qN[1:], # guess with current solution for q2 and q3
args=(qN[0], p_vals))

Mk, gk = eval_k(qN, u, p)
qNd = -np.linalg.solve(Mk, np.squeeze(gk))

Md, gd = eval_d(qN, u, p)
ud = -np.linalg.solve(Md, gd)[0]

return np.hstack((qNd, ud))

Now we can simulate with the same integrator tolerances and see if it improves the results.

286 Chapter 20. Equations of Motion with Holonomic Constraints

Learn Multibody Dynamics

ts_fsolve, xs_fsolve, con_fsolve = simulate(
eval_rhs_fsolve,
t0=t0,
tf=tf,
fps=fps,
q1_0=np.deg2rad(10.0),
u1_0=0.0,
q2_0g=np.deg2rad(20.0),
q3_0g=np.deg2rad(-150.0),
p=p_vals,

)

plot_results(ts_fsolve, xs_fsolve, con_fsolve);

HTML(animate_linkage(ts_fsolve, xs_fsolve, p_vals).to_jshtml(fps=fps))

<IPython.core.display.HTML object>

This result is much improved. The motion is more consistency periodic and the constraint residuals do not grow over time.
The constraint violations do reach large values at some times but tighter integration tolerances can bring those down in
magnitude. Looking closely at the trajectory of q2, you see that the solution drifts to increasingly negative minima, so this
solution still has weaknesses. Another potential downside of this approach is that fsolve() can be a computationally
costly function to run depending on the complexity of the constraints and the desired solver tolerances. Fortunately, there
are dedicated differential algebraic equation solvers that apply more efficient and accurate numerical methods to maintain
the constraints in the initial value problem.

20.6. Correct Dependent Coordinates 287

Learn Multibody Dynamics

20.7 Simulate Using a DAE Solver

In the prior simulation, we we numerically solved for q2 and q3 at each time step to provide a correction to those two
variables. This can be effective with tight integration tolerances, but is still a computationally naive approach. There
are more robust and efficient numerical methods for correcting the state variables at each time step. For example, the
SUNDIALS library includes the IDA solver for solving the initial value problem of a set of differential algebraic equations.
IDA uses a variation of an implicit backward differentiation method (similar to those offered in solve_ivp()) but
efficiently handles the algebraic constraints. IDA is written in C and scikits.odes provides a Python interface to many
SUNDIALS solvers, including IDA.
To use scikits.odes’s differential algebraic solver, we need to write the equations of motion in implicit form. We now can
write the equations of motion of a holonomic system with M holonomic constraints and n degrees of freedom as this
minimal set of equations:

f̄k(˙̄q, ū, q̄, q̄r, t) = 0 ∈ Rn

f̄d(˙̄u, ū, q̄, q̄r, t) = 0 ∈ Rn

f̄h(q̄, q̄r, t) = 0 ∈ RM
(20.22)

Note the reduced kinematical differential equation from our prior implementations, i.e. wewill not find q̄r from integration
alone. This gives 2n+M equations in 2n+M state variables ū, q̄, q̄r.
The sckits.odes dae() function is similar to solve_ivp() but has various other options and a different solution
output. dae() works with the explicit form of the equations, exactly as shown in Eq. (20.22). We need to build a
function that returns the left hand side of the equations and we will call the output of those equations the “residual”, which
should equate to zero at all times.
We will import the dae function directly, as that is all we need from scikits.odes.

from scikits.odes import dae

We now need to design a function that evaluates the left hand side of Eq. (20.22) and it needs to have a specific function
signature. In addition to the arguments in eval_rhs() above, this function needs the time derivative of the states and
a vector to store the result in.

Note: eval_eom() does not return a value. It only sets the individual values in the residual array. So if you run
eval_eom() and check residual you will see it has changed.

def eval_eom(t, x, xd, residual, p):
"""Returns the residual vector of the equations of motion.

Parameters
==========
t : float

Time at evaluation.
x : ndarray, shape(4,)

State vector at time t: x = [q1, q2, q3, u1].
xd : ndarray, shape(4,)

Time derivative of the state vector at time t: xd = [q1d, q2d, q3d, u1d].
residual : ndarray, shape(4,)

Vector to store the residuals in: residuals = [fk, fd, fh1, fh2].
p : ndarray, shape(6,)

Constant parameters: p = [la, lb, lc, ln, m, g]

"""

(continues on next page)

288 Chapter 20. Equations of Motion with Holonomic Constraints

https://computing.llnl.gov/projects/sundials
https://sundials.readthedocs.io/en/latest/ida/
https://scikits-odes.readthedocs.io/en/stable/

Learn Multibody Dynamics

(continued from previous page)

q1, q2, q3, u1 = x
q1d, _, _, u1d = xd # ignore the q2d and q3d values

Md, gd = eval_d([q1, q2, q3], [u1], p)

residual[0] = -q1d + u1 # fk, float
residual[1] = Md[0]*u1d + gd[0] # fd, float
residual[2:] = eval_fh([q2, q3], [q1], p).squeeze() # fh, shape(2,)

We already have the initial state defined x0, but we need to initialize the time derivatives of the states. These must be
consistent with the equations of motion, including the constraints. In our case, u1 = 0 so q̇1, q̇2 and q̇3 will also be zero.
But we do need to solve f̄d for the initial u̇1.

Md_vals, gd_vals = eval_d(x0[:3], x0[3:], p_vals)

xd0 = np.array([
0.0, # q1d [rad/s]
0.0, # q2d [rad/s]
0.0, # q3d [rad/s]
-np.linalg.solve(Md_vals, gd_vals)[0][0], # u1d [rad/s^2]

])
xd0

array([0. , 0. , 0. , -9.4688079])

Now I’ll create an empty array to store the residual results in using empty().

residual = np.empty(4)
residual

array([0. , 0. , 0. , -9.4688079])

With all of the arguments for eval_eom() prepared, we can see if it updates the residual properly. We should get a
residual of approximately zero if we’ve set consistent initial conditions.

eval_eom(t0, x0, xd0, residual, p_vals)
residual

array([0.00000000e+00, 0.00000000e+00, -2.44249065e-14, 5.88751270e-13])

It looks like our functions works! Now we can integrate the differential algebraic equations with the IDA integrator. We
first initialize a solver with the desired integrator parameters. I’ve set rtol and atol to be the same size as our prior
integrations. The algebraic_vars_idx argument is used to indicate which indices of residual correspond to
the holonomic constraints. Lastly, old_api is set to false to use the newest solution outputs from scikits.odes.

solver = dae('ida',
eval_eom,
rtol=1e-3,
atol=1e-6,
algebraic_vars_idx=[2, 3],
user_data=p_vals,
old_api=False)

To find a solution, the desired time array and the initial conditions are provided to .solve(). The time and state values
are stored in .values.t and .values.y.

20.7. Simulate Using a DAE Solver 289

https://numpy.org/doc/stable/reference/generated/numpy.empty.html#numpy.empty

Learn Multibody Dynamics

solution = solver.solve(ts, x0, xd0)

ts_dae = solution.values.t
xs_dae = solution.values.y
con_dae = eval_constraints(xs_dae, p_vals)

Now we can have a look at the results. The constraints are held to the order we specified in the integrator options.

plot_results(ts_dae, xs_dae, con_dae);

HTML(animate_linkage(ts_dae, xs_dae, p_vals).to_jshtml(fps=fps))

<IPython.core.display.HTML object>

With the same integration tolerances as we used in the two prior simulations, IDA keeps the constraint residuals under 8
mm for the duration of the simulation. This is an order of magnitude better than our prior approach.
Knowing that the IDA solution is better than the prior two solutions, we can compare them directly. Below I plot the
trajectory of u1 from each of the integration methods. This clearly shows the relative error in the solutions which both
become quite large over time.

fig, ax = plt.subplots()
fig.set_size_inches((10.0, 6.0))

ax.plot(
ts_dae, np.rad2deg(xs_dae[:, -1]), 'black',
ts, np.rad2deg(xs[:, -1]), 'C0',
ts_fsolve, np.rad2deg(xs_fsolve[:, -1]), 'C1',

)
ax.set_xlabel('Time [s]')
ax.set_ylabel('u_1 [deg/s]')

(continues on next page)

290 Chapter 20. Equations of Motion with Holonomic Constraints

Learn Multibody Dynamics

(continued from previous page)
ax.legend(['IDA', 'solve_ivp', 'solve_ivp + fsolve']);

The constraints and integration error can be enforced to tighter tolerances. With rtol and atol set to 1e-10 the
constraint residuals stay below 5e-10 meters for this simulation and a consistent periodic solution is realized.

solver = dae('ida',
eval_eom,
rtol=1e-10,
atol=1e-10,
algebraic_vars_idx=[2, 3],
user_data=p_vals,
old_api=False)

solution = solver.solve(ts, x0, xd0)

ts_dae = solution.values.t
xs_dae = solution.values.y
con_dae = eval_constraints(xs_dae, p_vals)

plot_results(ts_dae, xs_dae, con_dae);

20.7. Simulate Using a DAE Solver 291

Learn Multibody Dynamics

292 Chapter 20. Equations of Motion with Holonomic Constraints

CHAPTER

TWENTYONE

EXPOSING NONCONTRIBUTING FORCES

Note: You can download this example as a Python script: noncontributing.py or Jupyter Notebook:
noncontributing.ipynb.

import numpy as np
import sympy as sm
import sympy.physics.mechanics as me
me.init_vprinting(use_latex='mathjax')

class ReferenceFrame(me.ReferenceFrame):

def __init__(self, *args, **kwargs):

kwargs.pop('latexs', None)

lab = args[0].lower()
tex = r'\hat{{{}}}_{}'

super(ReferenceFrame, self).__init__(*args,
latexs=(tex.format(lab, 'x'),

tex.format(lab, 'y'),
tex.format(lab, 'z')),

**kwargs)
me.ReferenceFrame = ReferenceFrame

21.1 Learning Objectives

After completing this chapter readers will be able to:
• apply Newton’s Second Law to write equations of motion with maximal coordinates, which naturally expose non-
contributing forces

• use the auxiliary generalized speed method to expose noncontributing forces in Kane’s minimal coordinate formu-
lation

293

Learn Multibody Dynamics

21.2 Introduction

Kane’s formulation relieves us from having to consider noncontributing forces (See Sec. Contributing and Noncontributing
Forces), but often we are interested in one or more of these noncontributing forces. In this chapter, I will show how you
can find the equation for a noncontributing force by introducing auxiliary generalized speeds. But first, let’s solve the
equations of motion for a system by directly applying Newton’s Second Law of motion, which requires us to explicitly
define all contributing and noncontributing forces.

21.3 Double Pendulum Example

Fig. 21.1 shows a schematic of a simple planar double pendulum described by two generalized coordinates q1 and q2. The
particles P1 and P2 have massesm1 andm2, respectively. The lengths of the first and second pendulum arms are l1 and
l2, respectively. On the right, the free body diagrams depict the two tension forces T1 and T2 that act on each particle to
keep them at their respective radial locations.

Fig. 21.1: On the left, a kinematic diagram of a simple double planar pendulum with two links A of length l1 and B of
length l2. On the right are free body diagrams of each particle showing all of the contributing and noncontributing forces
acting on them. Gravity acts in the −n̂y direction.

Start by creating all of the necessary variables. The tension forces are time varying quantities.

m1, m2, l1, l2, g = sm.symbols('m1, m2, l1, l2, g')
q1, q2, u1, u2, T1, T2 = me.dynamicsymbols('q1, q2, u1, u2, T1, T2')
t = me.dynamicsymbols._t

p = sm.Matrix([m1, m2, l1, l2, g])
q = sm.Matrix([q1, q2])
u = sm.Matrix([u1, u2])

(continues on next page)

294 Chapter 21. Exposing Noncontributing Forces

https://en.wikipedia.org/wiki/Double_pendulum
https://en.wikipedia.org/wiki/Free_body_diagram

Learn Multibody Dynamics

(continued from previous page)
r = sm.Matrix([T1, T2])

ud = u.diff(t)

p, q, u, r, ud

m1

m2

l1
l2
g

 ,
[
q1
q2

]
,

[
u1
u2

]
,

[
T1
T2

]
,

[
u̇1
u̇2

] (21.1)

Both pendulums’ configuration are described by angles relative to the vertical direction. We will choose the generalized
speeds to be ū = ˙̄q and set the angular velocities to be in terms of them.

N = me.ReferenceFrame('N')
A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')

A.orient_axis(N, q1, N.z)
B.orient_axis(N, q2, N.z)

A.set_ang_vel(N, u1*N.z)
B.set_ang_vel(N, u2*N.z)

Now the positions, velocities, and accelerations of each particle can be formed.

O = me.Point('O')
P1 = O.locatenew('P1', -l1*A.y)
P2 = P1.locatenew('P2', -l2*B.y)

O.set_vel(N, 0)
P1.v2pt_theory(O, N, A)

l1u1âx (21.2)

P2.v2pt_theory(P1, N, B)

l1u1âx + l2u2b̂x (21.3)

P1.a2pt_theory(O, N, A)

l1u̇1âx + l1u
2
1ây (21.4)

21.3. Double Pendulum Example 295

Learn Multibody Dynamics

P2.a2pt_theory(P1, N, B)

l1u̇1âx + l1u
2
1ây + l2u̇2b̂x + l2u

2
2b̂y (21.5)

All of the kinematics are strictly in terms of the generalized coordinates and the generalized speeds.

21.4 Apply Newton’s Second Law Directly

Direction application of Newton’s Second Law can be done if all of the forces (noncontributing and contributing) are
described for each of the two particles. Vector equations representing the law for each particle are:∑

F̄P1 = m1
N āP1∑

F̄P2 = m2
N āP2

(21.6)

From the free body diagram (Fig. 21.1) we see that all of the forces acting on P1 are:

F_P1 = T1*A.y - T2*B.y - m1*g*N.y
F_P1.express(N)

(−T1 sin (q1) + T2 sin (q2))n̂x + (−gm1 + T1 cos (q1)− T2 cos (q2))n̂y (21.7)

and all of the forces acting on P2 are:

F_P2 = T2*B.y - m2*g*N.y
F_P2.express(N)

−T2 sin (q2)n̂x + (−gm2 + T2 cos (q2))n̂y (21.8)

Now we can form the two vector expressions of Newton’s Second Law for each particle. Moving everything to the right
hand side gives:

0̄ =
∑

F̄P1 −m1
N āP1

0̄ =
∑

F̄P2 −m2
N āP2

(21.9)

zero_P1 = F_P1 - m1*P1.acc(N)
zero_P2 = F_P2 - m2*P2.acc(N)

These two planar vector equations can then be written as four scalar equations by extracting the n̂x and n̂y measure
numbers.

fd = sm.Matrix([
zero_P1.dot(N.x),
zero_P1.dot(N.y),
zero_P2.dot(N.x),
zero_P2.dot(N.y),

])
fd

296 Chapter 21. Exposing Noncontributing Forces

Learn Multibody Dynamics

−l1m1 cos (q1)u̇1 −

(
−l1m1u

2
1 + T1

)
sin (q1) + T2 sin (q2)

−gm1 − l1m1 sin (q1)u̇1 +
(
−l1m1u

2
1 + T1

)
cos (q1)− T2 cos (q2)

l1m2u
2
1 sin (q1)− l1m2 cos (q1)u̇1 − l2m2 cos (q2)u̇2 −

(
−l2m2u

2
2 + T2

)
sin (q2)

−gm2 − l1m2u
2
1 cos (q1)− l1m2 sin (q1)u̇1 − l2m2 sin (q2)u̇2 +

(
−l2m2u

2
2 + T2

)
cos (q2)

 (21.10)

It is important to note that these scalar equations are linear in both the time derivatives of the generalized speeds u̇1, u̇2
as well as the two noncontributing force magnitudes T1, T2 and that all four equations are coupled in these four variables.

(me.find_dynamicsymbols(fd[0]), me.find_dynamicsymbols(fd[1]),
me.find_dynamicsymbols(fd[2]), me.find_dynamicsymbols(fd[3]))

({T1, T2, q1, q2, u1, u̇1} , {T1, T2, q1, q2, u1, u̇1} , {T2, q1, q2, u1, u2, u̇1, u̇2} , {T2, q1, q2, u1, u2, u̇1, u̇2}) (21.11)

That means we can write the equations as:

f̄d(˙̄u, q̄, r̄, t) = Md

[
˙̄u
r̄

]
+ ḡd (21.12)

where r̄ = [T1 T2]
T . The linear coefficient matrix and the remainder can be extracted as usual:

ud, r

([
u̇1
u̇2

]
,

[
T1
T2

])
(21.13)

udr = ud.col_join(r)
udr_zero = {v: 0 for v in udr}

Md = fd.jacobian(udr)
gd = fd.xreplace(udr_zero)

Md, udr, gd

−l1m1 cos (q1) 0 − sin (q1) sin (q2)
−l1m1 sin (q1) 0 cos (q1) − cos (q2)
−l1m2 cos (q1) −l2m2 cos (q2) 0 − sin (q2)
−l1m2 sin (q1) −l2m2 sin (q2) 0 cos (q2)

 ,

u̇1
u̇2
T1
T2

 ,

l1m1u
2
1 sin (q1)

−gm1 − l1m1u
2
1 cos (q1)

l1m2u
2
1 sin (q1) + l2m2u

2
2 sin (q2)

−gm2 − l1m2u
2
1 cos (q1)− l2m2u

2
2 cos (q2)

(21.14)

The four equations are fully coupled, so we must solve for the four variables simultaneously. When applying Newton’s
Second Law directly, additional coupled equations for each noncontributing force are necessary to solve the dynamical
differential equations. When formulating the equations with Kane’s method, similar equations for the noncontributing
forces can be generated, but the noncontributing forces will remain absent from the dynamical differential equations.

21.4. Apply Newton’s Second Law Directly 297

Learn Multibody Dynamics

21.5 Auxiliary Generalized Speeds

When we form Kane’s equations, noncontributing forces will not be present in the equations of motion as they are above
in the classical Newton formulation, but it is possible to expose select noncontributing forces by taking advantage of the
role of the partial velocities. Forces and torques that are not normal to the partial velocity will contribute to the equations
of motion. It is then possible to introduce fictitious partial velocities via an auxiliary generalized speed, along with a force
or torque that acts in the same direction of the fictitious motion to generate extra equations for the noncontributing forces
or torques. See [Kane1985] pg. 114 for more explanation of this idea.
As an example , here I introduce two fictitious generalized speeds, u3 and u4 that lets each particle have motion relative to
its fixed location on the pendulum arm in the direction of the two noncontributing forces that we desire to know. Fig. 21.2
shows the two additional speeds and the associated forces. We introduce these speeds without introducing any related
generalized coordinates.

Fig. 21.2: Kinematic diagram of the double pendulum showing the fictitious auxiliarly generalized speeds u3 and u4 and
the associated contributing forces.

First find the velocity of P1 with the additional velocity component and store this separately in N_v_P1a to indicate it is
affected by this auxiliary generalized speed.

u3, u4 = me.dynamicsymbols('u3, u4')

N_v_P1a = P1.vel(N) - u3*A.y
N_v_P1a

l1u1âx − u3ây (21.15)

Similarly, write the velocity of P2 using the velocity two point theorem and adding the auxiliary component. Note that
the pendulum arm does not change in length because we have not added any generalized coordinates, so the two auxiliary
velocities can be simply added in each step.

298 Chapter 21. Exposing Noncontributing Forces

Learn Multibody Dynamics

N_v_P2a = N_v_P1a + me.cross(B.ang_vel_in(N), P2.pos_from(P1)) - u4*B.y
N_v_P2a

l1u1âx − u3ây + l2u2b̂x − u4b̂y (21.16)

These two velocities will be used to generate the partial velocities for two additional generalized active forces and
generalized inertia forces, one for each of the auxiliary generalized speeds u3 and u4.

21.6 Auxiliary Generalized Active Forces

We now have four generalized speeds, two of which are auxiliary generalized speeds. With these speeds we will formulate
four generalized active forces. The generalized active forces associated with u1 and u2 are no different than if we were
not exposing the noncontributing forces, so we follow the usual procedure.

R_P1 = -m1*g*N.y
R_P2 = -m2*g*N.y

F1 = P1.vel(N).diff(u1, N).dot(R_P1) + P2.vel(N).diff(u1, N).dot(R_P2)
F1

−gl1m1 sin (q1)− gl1m2 sin (q1) (21.17)

F2 = P1.vel(N).diff(u2, N).dot(R_P1) + P2.vel(N).diff(u2, N).dot(R_P2)
F2

−gl2m2 sin (q2) (21.18)

For F3 and F4, the contributing forces we wish to know that are associated with the auxiliary generalized speeds are
added to the resultant acting on the two particles.

R_P1_aux = R_P1 + T1*A.y - T2*B.y
R_P2_aux = R_P2 + T2*B.y

Now the velocities of the particles that include the auxiliary generalized speeds are used to calculate the partial velocities
and the auxiliary generalized active forces are formed.

F3 = N_v_P1a.diff(u3, N).dot(R_P1_aux) + N_v_P2a.diff(u3, N).dot(R_P2_aux)
F3

gm1 cos (q1) + gm2 cos (q1)− T1 (21.19)

21.6. Auxiliary Generalized Active Forces 299

Learn Multibody Dynamics

F4 = N_v_P1a.diff(u4, N).dot(R_P1_aux) + N_v_P2a.diff(u4, N).dot(R_P2_aux)
F4

gm2 cos (q2)− T2 (21.20)

Finally, we form F̄r that consists of the two normal generalized active forces and the two auxiliary generalized active
forces, the later two containing the unknown force magnitudes T1 and T2.

Fr = sm.Matrix([F1, F2, F3, F4])
Fr

−gl1m1 sin (q1)− gl1m2 sin (q1)

−gl2m2 sin (q2)
gm1 cos (q1) + gm2 cos (q1)− T1

gm2 cos (q2)− T2

 (21.21)

21.7 Auxiliary Generalized Inertia Forces

Similar to the generalized active forces, the generalized inertia forces for u1 and u2 are computed as usual. See
[Kane1985] pg. 169 and pg. 217 for more explanation.

Rs_P1 = -m1*P1.acc(N)
Rs_P2 = -m2*P2.acc(N)

F1s = P1.vel(N).diff(u1, N).dot(Rs_P1) + P2.vel(N).diff(u1, N).dot(Rs_P2)
F1s

−l21m1u̇1 − l21m2u̇1 + l1
(
−l2m2 (sin (q1) sin (q2) + cos (q1) cos (q2)) u̇2 − l2m2 (sin (q1) cos (q2)− sin (q2) cos (q1))u22

)
(21.22)

F2s = P1.vel(N).diff(u2, N).dot(Rs_P1) + P2.vel(N).diff(u2, N).dot(Rs_P2)
F2s

−l22m2u̇2 + l2
(
−l1m2 (sin (q1) sin (q2) + cos (q1) cos (q2)) u̇1 − l1m2 (− sin (q1) cos (q2) + sin (q2) cos (q1))u21

)
(21.23)

The auxiliary generalized inertia forces are found using the velocities where u3 and u4 are present, but the acceleration
of the particles need not include u3 and u4, because they are equal to zero because u3 and u4 are actually equal to zero.

F3s = N_v_P1a.diff(u3, N).dot(Rs_P1) + N_v_P2a.diff(u3, N).dot(Rs_P2)
F3s

l1m1u
2
1 + l1m2u

2
1 + l2m2 (sin (q1) sin (q2) + cos (q1) cos (q2))u22 + l2m2 (− sin (q1) cos (q2) + sin (q2) cos (q1)) u̇2

(21.24)

300 Chapter 21. Exposing Noncontributing Forces

Learn Multibody Dynamics

F4s = N_v_P1a.diff(u4, N).dot(Rs_P1) + N_v_P2a.diff(u4, N).dot(Rs_P2)
F4s

l1m2 (sin (q1) sin (q2) + cos (q1) cos (q2))u21 + l1m2 (sin (q1) cos (q2)− sin (q2) cos (q1)) u̇1 + l2m2u
2
2 (21.25)

And finally, F̄ ∗
r is formed for all four generalized speeds:

Frs = sm.Matrix([F1s, F2s, F3s, F4s])
Frs = sm.trigsimp(Frs)
Frs

−l1

(
l1m1u̇1 + l1m2u̇1 + l2m2u

2
2 sin (q1 − q2) + l2m2 cos (q1 − q2)u̇2

)
l2m2

(
l1u

2
1 sin (q1 − q2)− l1 cos (q1 − q2)u̇1 − l2u̇2

)
l1m1u

2
1 + l1m2u

2
1 + l2m2u

2
2 cos (q1 − q2)− l2m2 sin (q1 − q2)u̇2

m2

(
l1u

2
1 cos (q1 − q2) + l1 sin (q1 − q2)u̇1 + l2u

2
2

)
 (21.26)

Warning: In this example, u3, u4, u̇3, u̇4 are not present in the auxiliary generalized inertia forces but you may end
up with auxiliary speeds and their derivatives in your auxiliary generalized inertia forces. If you do, you need to set
them all to zero to arrive at the desired equations.

21.8 Augmented Dynamical Differential Equations

We can now form Kane’s dynamical differential equations which I will name f̄a to indicate they include the auxiliary
equations. These equations are linear in u̇1, u̇2, T1 and T2.

fa = Frs + Fr
me.find_dynamicsymbols(fa)

{T1, T2, q1, q2, u1, u2, u̇1, u̇2} (21.27)

Now when we extract the linear coefficients, we see that the dynamical differential equations (the first two rows) are
independent of the unknown force magnitudes, allowing us to use the equations for ˙̄u independently.

Ma = fa.jacobian(udr)
ga = fa.xreplace(udr_zero)

Ma, udr, ga

−l1 (l1m1 + l1m2) −l1l2m2 cos (q1 − q2) 0 0
−l1l2m2 cos (q1 − q2) −l22m2 0 0

0 −l2m2 sin (q1 − q2) −1 0
l1m2 sin (q1 − q2) 0 0 −1

 ,

u̇1
u̇2
T1
T2

 ,

−gl1m1 sin (q1)− gl1m2 sin (q1)− l1l2m2u
2
2 sin (q1 − q2)

−gl2m2 sin (q2) + l1l2m2u
2
1 sin (q1 − q2)

gm1 cos (q1) + gm2 cos (q1) + l1m1u
2
1 + l1m2u

2
1 + l2m2u

2
2 cos (q1 − q2)

gm2 cos (q2) +m2

(
l1u

2
1 cos (q1 − q2) + l2u

2
2

)

(21.28)

We can solve the system to find functions for T1 and T2, if desired.

21.8. Augmented Dynamical Differential Equations 301

Learn Multibody Dynamics

udr_sol = -Ma.LUsolve(ga)

T1_sol = sm.trigsimp(udr_sol[2])
T1_sol

gm1 cos (q1) + gm2 cos (q1) + l1m1u
2
1 + l1m2u

2
1 + l2m2u

2
2 cos (q1 − q2) +

l2m2

(
−gl2m2 sin (q2) + l1l2m2u

2
1 sin (q1 − q2) +

l1l2m2(gm1 sin (q1)+gm2 sin (q1)+l2m2u
2
2 sin (q1−q2)) cos (q1−q2)

l1m1+l1m2

)
sin (q1 − q2)

l1l22m
2
2 cos2 (q1−q2)

l1m1+l1m2
− l22m2

(21.29)

T2_sol = sm.trigsimp(udr_sol[3])
T2_sol

gm2 cos (q2) +
l1l2m

2
2

(
−gl2m2 sin (q2) + l1l2m2u

2
1 sin (q1 − q2) +

l1l2m2(gm1 sin (q1)+gm2 sin (q1)+l2m2u
2
2 sin (q1−q2)) cos (q1−q2)

l1m1+l1m2

)
sin (q1 − q2) cos (q1 − q2)

(l1m1 + l1m2)
(
l1l22m

2
2 cos2 (q1−q2)

l1m1+l1m2
− l22m2

) −
l1m2

(
gm1 sin (q1) + gm2 sin (q1) + l2m2u

2
2 sin (q1 − q2)

)
sin (q1 − q2)

l1m1 + l1m2
+m2

(
l1u

2
1 cos (q1 − q2) + l2u

2
2

)
(21.30)

21.9 Compare Newton and Kane Results

To ensure that the Newton approach and the Kane approach do produce equivalent results, we can numerically evaluate
the equations with the same inputs and see if the results are the same. Here are some arbitrary numerical values for the
states and constants.

q0 = np.array([
np.deg2rad(15.0), # q1 [rad]
np.deg2rad(25.0), # q2 [rad]

])

u0 = np.array([
np.deg2rad(123.0), # u1 [rad/s]
np.deg2rad(-41.0), # u2 [rad/s]

])

p_vals = np.array([
1.2, # m1 [kg]
5.6, # m2 [kg]
1.34, # l1 [m]
6.7, # l2 [m]
9.81, # g [m/2^2]

])

Create numeric functions to evaluate the two sets of matrices and execute both functions with the same numerical inputs
from above.

302 Chapter 21. Exposing Noncontributing Forces

Learn Multibody Dynamics

eval_d = sm.lambdify((q, u, p), (Md, gd))
eval_a = sm.lambdify((q, u, p), (Ma, ga))

Md_vals, gd_vals = eval_d(q0, u0, p_vals)
Ma_vals, ga_vals = eval_a(q0, u0, p_vals)

Now compare the solutions for
[
˙̄u r̄

]
.

-np.linalg.solve(Md_vals, np.squeeze(gd_vals))

array([8.09538007, -2.37332094, 109.88598116, 92.50997719])

-np.linalg.solve(Ma_vals, np.squeeze(ga_vals))

array([8.09538007, -2.37332094, 109.88598116, 92.50997719])

For this set of inputs, the outputs are the same showing that using the auxiliary speed approach gives the same results,
with the slight advantage that the dynamical differential equations are not coupled to the equations for the noncontributing
forces in Kane’s method.
The forces can also be evaluated directly from the symbolic solutions, which is useful for post simulation application.

eval_forces = sm.lambdify((q, u, p), (T1_sol, T2_sol))
eval_forces(q0, u0, p_vals)

(109.885981161619, 92.5099771909879) (21.31)

21.9. Compare Newton and Kane Results 303

Learn Multibody Dynamics

304 Chapter 21. Exposing Noncontributing Forces

CHAPTER

TWENTYTWO

ENERGY AND POWER

Note: You can download this example as a Python script: energy.py or Jupyter Notebook: energy.ipynb.

from IPython.display import HTML
from matplotlib.animation import FuncAnimation
from scikits.odes import dae
from scipy.optimize import fsolve
import matplotlib.pyplot as plt
import numpy as np
import sympy as sm
import sympy.physics.mechanics as me
me.init_vprinting(use_latex='mathjax')

class ReferenceFrame(me.ReferenceFrame):

def __init__(self, *args, **kwargs):

kwargs.pop('latexs', None)

lab = args[0].lower()
tex = r'\hat{{{}}}_{}'

super(ReferenceFrame, self).__init__(*args,
latexs=(tex.format(lab, 'x'),

tex.format(lab, 'y'),
tex.format(lab, 'z')),

**kwargs)
me.ReferenceFrame = ReferenceFrame

22.1 Learning Objectives

After completing this chapter readers will be able to:
• calculate the kinetic and potential energy of a multibody system
• evaluate a simulation for energy gains and losses

305

Learn Multibody Dynamics

22.2 Introduction

So far we have investigated multibody systems from the perspective of forces and their relationship to motion. It is also
useful to understand these systems from a power and energy perspective. Power P is the time rate of change in workW
done where work is the energy gained, dissipated, or exchanged in a system.

P =
dW
dt

(22.1)

Conversely, work is the integral of power:

W (t) =

∫ tf

t0

P (t)dt (22.2)

The work done by a force F̄ acting on a point located by position vector r̄(t) is calculated as:

W =

∫ r̄(t1)

r̄(t0)

F̄ · dr̄ =
∫ t1

t0

F̄ · ˙̄rdt (22.3)

From which we also see P = F̄ · ˙̄r.
Energy in a multibody system comes in many forms and can be classified as kinetic, potential (conservative), or non-
conservative. Any energy that enters or leaves the system is non-conservative.

22.3 Kinetic Energy

Kinetic energy K is an instantaneous measure of the energy due to motion of all of the particles and rigid bodies in a
system. A rigid body will, in general, have a translational and a rotational component of kinetic energy. A particle cannot
rotate so it only has translational kinetic energy. Kinetic energy can be thought of as the work done by the generalized
inertia forces F̄ ∗

r with going from the current state to rest.
Translational kinetic energy of a particle Q of massm in reference frame N is:

KQ :=
1

2
m
∣∣N v̄Q∣∣2 =

1

2
mN v̄Q · N v̄Q (22.4)

If Q is the mass center of a rigid body, the equation represents the translational kinetic energy of the rigid body. The
rotational kinetic energy of a rigid body B with mass center Bo in N is added to its translational kinetic energy and the
total kinetic energy of B is defined as:

KB :=
1

2
mN v̄Bo · N v̄Bo +

1

2
N ω̄B · ĬB/Bo · N ω̄B (22.5)

The total kinetic energy in a multibody system is the sum of the kinetic energies for all particles and rigid bodies.

22.4 Potential Energy

Some of the generalized active force contributions in inertial reference frame N can be written as

Fr = − ∂V

∂qr
(22.6)

when ū = ˙̄q and where V is strictly a function of the generalized coordinates and time, i.e. V (q̄, t). These functions V
are potential energies inN . The associated generalized active force contributions are from conservative forces. They are

306 Chapter 22. Energy and Power

https://en.wikipedia.org/wiki/Power_(physics)
https://en.wikipedia.org/wiki/Conservative_force

Learn Multibody Dynamics

forces for which the work done by the force for any path r̄(t) starting and ending at the same position equals zero. The
most common conservative forces seen in multibody systems are gravitational forces and ideal spring forces, but there are
conservative forces related to electrostatic forces, magnetic forces, etc.
For small objects at Earth’s surface we model gravity as a uniform field and the potential energy of a particle or rigid body
is:

V = mgh (22.7)

wherem is the body or particle’s mass, g is the acceleration due to gravity at the Earth’s surface, and h(q̄, t) is the distance
parallel to the gravitational field direction of the particle or body with respect to an arbitrary reference point.
A linear spring generates a conservative force F = kx between two points P and Q and its potential energy is:

Vs =
1

2
k
∣∣∣r̄P/Q

∣∣∣2 =
1

2
kr̄P/Q · r̄P/Q (22.8)

The sum of all potential energies in a system give the total potential energy of the system.

22.5 Total Energy

The total energy of the system is:

E := K + V (22.9)

If F̄r is only made up of conservative forces, then the system is conservative and will not lose energy as it moves, it simply
exchanges kinetic for potential and vice versa, i.e. E is constant for conservative systems.

22.6 Energetics of Jumping

Let’s create a simple multibody model of a person doing a vertical jump like shown in the video below so that we can
calculate the kinetic and potential energy.
We can model the jumper in a single plane with two rigid bodies representing the thigh B and the calf A of the legs
lumping the left and right leg segments together. The mass centers of the leg segments lie on the line connecting the
segment end points but at some distance from the ends da, db. To avoid having to stabilize the jumper, we can assume
that particles representing the foot Pf and the upper body Pu can only move vertically and are always aligned vertically
over one another. The foot Pf , knee Pk, and hip Pu are all modeled as pin joints. The mass of the foot mf and the
mass of the upper body are modeled as particles at Pf and Pu, respectively. We will model a collision force Ff from the
ground N acting on the foot Pf using the Hunt-Crossley formulation described in Collision. We will actuate the jumper
using only a torque acting between the thigh and the calf Tk that represents the combine forces of the muscles attached
between the two leg segments. Fig. 22.1 shows a free body diagram of the model.

22.6.1 Equations of Motion

We first define all of the necessary symbols:

g = sm.symbols('g')
mu, ma, mb, mf = sm.symbols('m_u, m_a, m_b, m_f')
Ia, Ib = sm.symbols('I_a, I_b')
kf, cf, kk, ck = sm.symbols('k_f, c_f, k_k, c_k')
la, lb, da, db = sm.symbols('l_a, l_b, d_a, d_b')

(continues on next page)

22.5. Total Energy 307

Learn Multibody Dynamics

Fig. 22.1: Free body diagram of a simple model of a human jumper.

308 Chapter 22. Energy and Power

Learn Multibody Dynamics

(continued from previous page)
q1, q2, q3 = me.dynamicsymbols('q1, q2, q3', real=True)
u1, u2, u3 = me.dynamicsymbols('u1, u2, u3', real=True)
Tk = me.dynamicsymbols('T_k')

t = me.dynamicsymbols._t

q = sm.Matrix([q1, q2, q3])
u = sm.Matrix([u1, u2, u3])
ud = u.diff(t)
us = sm.Matrix([u1, u3])
usd = us.diff(t)
p = sm.Matrix([

Ia,
Ib,
cf,
ck,
da,
db,
g,
kf,
kk,
la,
lb,
ma,
mb,
mf,
mu,

])
r = sm.Matrix([Tk])

Then we set up the kinematics:

N = me.ReferenceFrame('N')
A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')

A.orient_axis(N, q2, N.z)
B.orient_axis(A, q3, N.z)

A.set_ang_vel(N, u2*N.z)
B.set_ang_vel(A, u3*N.z)

O = me.Point('O')
Ao, Bo = me.Point('A_o'), me.Point('B_o')
Pu, Pk, Pf = me.Point('P_u'), me.Point('P_k'), me.Point('P_f')

Pf.set_pos(O, q1*N.y)
Ao.set_pos(Pf, da*A.x)
Pk.set_pos(Pf, la*A.x)
Bo.set_pos(Pk, db*B.x)
Pu.set_pos(Pk, lb*B.x)

O.set_vel(N, 0)
Pf.set_vel(N, u1*N.y)
Pk.v2pt_theory(Pf, N, A)
Pu.v2pt_theory(Pk, N, B)

(continues on next page)

22.6. Energetics of Jumping 309

Learn Multibody Dynamics

(continued from previous page)
qd_repl = {q1.diff(t): u1, q2.diff(t): u2, q3.diff(t): u3}
qdd_repl = {q1.diff(t, 2): u1.diff(t), q2.diff(t, 2): u2.diff(t), q3.diff(t, 2): u3.
↪→diff(t)}

holonomic = Pu.pos_from(O).dot(N.x)
vel_con = holonomic.diff(t).xreplace(qd_repl)
acc_con = vel_con.diff(t).xreplace(qdd_repl).xreplace(qd_repl)

q2 is dependent

u2_repl = {u2: sm.solve(vel_con, u2)[0]}
u2d_repl = {u2.diff(t): sm.solve(acc_con, u2.diff(t))[0].xreplace(u2_repl)}

Gravity acts on all the masses and mass centers and we have a single force acting on the foot from the ground that includes
the collision stiffness and damping terms with coefficients kf and cf respectively.

R_Pu = -mu*g*N.y
R_Ao = -ma*g*N.y
R_Bo = -mb*g*N.y

zp = (sm.Abs(q1) - q1)/2
damping = sm.Piecewise((-cf*u1, q1<0), (0.0, True))
Ff = (kf*zp**(sm.S(3)/2) + damping)*N.y

R_Pf = -mf*g*N.y + Ff
R_Pf

(−gmf + kf

(
−q1

2
+

|q1|
2

) 3
2

+

{
−cfu1 for q1 < 0

0.0 otherwise
)n̂y (22.10)

The torques on the thigh and calf will include a passive stiffness and damping to represent muscle tendons and tissue
effects with coefficients kk and ck respectively as well as the muscle actuation torque Tk.

T_A = (kk*(q3 - sm.pi/2) + ck*u3 + Tk)*N.z
T_B = -T_A
T_A

(cku3 + kk

(
q3 −

π

2

)
+ Tk)n̂z (22.11)

Define the inertia dyadics for the legs:

I_A_Ao = Ia*me.outer(N.z, N.z)
I_B_Bo = Ib*me.outer(N.z, N.z)

Finally, formulate Kane’s equations:

points = [Pu, Ao, Bo, Pf]
forces = [R_Pu, R_Ao, R_Bo, R_Pf]
masses = [mu, ma, mb, mf]

frames = [A, B]
torques = [T_A, T_B]

(continues on next page)

310 Chapter 22. Energy and Power

Learn Multibody Dynamics

(continued from previous page)
inertias = [I_A_Ao, I_B_Bo]

Fr_bar = []
Frs_bar = []

for ur in [u1, u3]:

Fr = 0
Frs = 0

for Pi, Ri, mi in zip(points, forces, masses):
N_v_Pi = Pi.vel(N).xreplace(u2_repl)
vr = N_v_Pi.diff(ur, N)
Fr += vr.dot(Ri)
N_a_Pi = Pi.acc(N).xreplace(u2d_repl).xreplace(u2_repl)
Rs = -mi*N_a_Pi
Frs += vr.dot(Rs)

for Bi, Ti, Ii in zip(frames, torques, inertias):
N_w_Bi = Bi.ang_vel_in(N).xreplace(u2_repl)
N_alp_Bi = Bi.ang_acc_in(N).xreplace(u2d_repl).xreplace(u2_repl)
wr = N_w_Bi.diff(ur, N)
Fr += wr.dot(Ti)
Ts = -(N_alp_Bi.dot(Ii) + me.cross(N_w_Bi, Ii).dot(N_w_Bi))
Frs += wr.dot(Ts)

Fr_bar.append(Fr)
Frs_bar.append(Frs)

Fr = sm.Matrix(Fr_bar)
Frs = sm.Matrix(Frs_bar)
kane_eq = Fr + Frs

22.6.2 Energy

The total potential energy is derived based on the height of all the particles and rigid body mass centers above a reference
point O on the ground and the two springs: passive knee stiffness and the ground-foot stiffness. The work done by these
two springs can be found using integrate():

Vf = -sm.integrate(kf*zp**(sm.S(3)/2), q1)
Vf

−

{
0 for q1 ≥ 0

− 2kf (−q1)
5
2

5 otherwise
(22.12)

Vk = sm.integrate(kk*(q3 - sm.pi/2), q3)
Vk

kkq
2
3

2
− πkkq3

2
(22.13)

22.6. Energetics of Jumping 311

https://docs.sympy.org/latest/modules/integrals/integrals.html#sympy.integrals.integrals.integrate

Learn Multibody Dynamics

V = (
(mf*g*Pf.pos_from(O) +
ma*g*Ao.pos_from(O) +
mb*g*Bo.pos_from(O) +
mu*g*Pu.pos_from(O)).dot(N.y) +

Vf + Vk
)
V

gmaq1 + gmbq1 + gmfq1 + gmuq1 +
kkq

2
3

2
− πkkq3

2
+ (sin (q2) cos (q3) + sin (q3) cos (q2)) (dbgmb + glbmu) + (dagma + glamb + glamu) sin (q2)−

{
0 for q1 ≥ 0

− 2kf (−q1)
5
2

5 otherwise
(22.14)

The kinetic energy is made up of the translational kinetic energy of the foot and upper body particlesKf andKu:

Kf = mf*me.dot(Pf.vel(N), Pf.vel(N))/2
Ku = mu*me.dot(Pu.vel(N), Pu.vel(N))/2
Kf, sm.simplify(Ku)

mfu
2
1

2
,
mu

(
l2au

2
2 + 2lalb (u2 + u3)u2 cos (q3) + 2lau1u2 cos (q2) + l2b (u2 + u3)

2
+ 2lb (u2 + u3)u1 cos (q2 + q3) + u21

)
2

(22.15)

as well as the translational and rotational kinetic energies of the calf and thighKA andKB :

KA = ma*me.dot(Ao.vel(N), Ao.vel(N))/2 + me.dot(me.dot(A.ang_vel_in(N), I_A_Ao), A.
↪→ang_vel_in(N))/2
KA

Iau
2
2

2
+
ma

(
d2au

2
2 + 2dau1u2 cos (q2) + u21

)
2

(22.16)

KB = mb*me.dot(Bo.vel(N), Bo.vel(N))/2 + me.dot(me.dot(B.ang_vel_in(N), I_B_Bo), B.
↪→ang_vel_in(N))/2
sm.simplify(KB)

Ib (u2 + u3)
2

2
+
mb

(
d2b (u2 + u3)

2
+ 2dbla (u2 + u3)u2 cos (q3) + 2db (u2 + u3)u1 cos (q2 + q3) + l2au

2
2 + 2lau1u2 cos (q2) + u21

)
2

(22.17)

The total kinetic energy of the system is thenK = Kf +Ku +KA +KB :

K = Kf + Ku + KA + KB

312 Chapter 22. Energy and Power

Learn Multibody Dynamics

22.7 Simulation Setup

We will simulate the system to investigate the energy. Below are various functions that convert the symbolic equations to
numerical functions, simulate the system with some initial conditions, and plot/animate the results. These are similar to
prior chapters, so I leave them unexplained.

Simulation code

eval_kane = sm.lambdify((q, usd, us, r, p), kane_eq)
eval_holo = sm.lambdify((q, p), holonomic)
eval_vel_con = sm.lambdify((q, u, p), vel_con)
eval_acc_con = sm.lambdify((q, ud, u, p), acc_con)
eval_energy = sm.lambdify((q, us, p), (K.xreplace(u2_repl), V.xreplace(u2_repl)))

coordinates = Pf.pos_from(O).to_matrix(N)
for point in [Ao, Pk, Bo, Pu]:

coordinates = coordinates.row_join(point.pos_from(O).to_matrix(N))
eval_point_coords = sm.lambdify((q, p), coordinates)

def eval_eom(t, x, xd, residual, p_r):
"""Returns the residual vector of the equations of motion.

Parameters
==========
t : float

Time at evaluation.
x : ndarray, shape(5,)

State vector at time t: x = [q1, q2, q3, u1, u3].
xd : ndarray, shape(5,)

Time derivative of the state vector at time t: xd = [q1d, q2d, q3d, u1d, u3d].
residual : ndarray, shape(5,)

Vector to store the residuals in: residuals = [fk, fd, fh].
r : function

Function of [Tk] = r(t, x) that evaluates the input Tk.
p : ndarray, shape(15,)

Constant parameters: p = [Ia, Ib, cf, ck, da, db, g, kf, kk, la, lb,
ma, mb, mf, mu]

"""

p, r = p_r

q1, q2, q3, u1, u3 = x
q1d, _, q3d, u1d, u3d = xd # ignore the q2d value

residual[0] = -q1d + u1
residual[1] = -q3d + u3
residual[2:4] = eval_kane([q1, q2, q3], [u1d, u3d], [u1, u3], r(t, x, p), p).

↪→squeeze()
residual[4] = eval_holo([q1, q2, q3], p)

def setup_initial_conditions(q1, q3, u1, u3):

q0 = np.array([q1, np.nan, q3])

(continues on next page)

22.7. Simulation Setup 313

Learn Multibody Dynamics

(continued from previous page)
q0[1] = fsolve(lambda q2: eval_holo([q0[0], q2, q0[2]], p_vals),

np.deg2rad(45.0))[0]

u0 = np.array([u1, u3])

u20 = fsolve(lambda u2: eval_vel_con(q0, [u0[0], u2, u0[1]], p_vals),
np.deg2rad(0.0))[0]

x0 = np.hstack((q0, u0))

TODO : use equations to set these
ud0 = np.array([0.0, 0.0])

xd0 = np.hstack(([u0[0], u20, u0[1]], ud0))

return x0, xd0

def simulate(t0, tf, fps, x0, xd0, p_vals, eval_r):

ts = np.linspace(t0, tf, num=int(fps*(tf - t0)))

solver = dae('ida',
eval_eom,
rtol=1e-8,
atol=1e-8,
algebraic_vars_idx=[4],
user_data=(p_vals, eval_r),
old_api=False)

solution = solver.solve(ts, x0, xd0)

ts = solution.values.t
xs = solution.values.y

Ks, Vs = eval_energy(xs[:, :3].T, xs[:, 3:].T, p_vals)
Es = Ks + Vs

Tks = np.empty_like(ts)
for i, ti in enumerate(ts):

Tks[i] = eval_r(ti, None, None)[0]

return ts, xs, Ks, Vs, Es, Tks

def plot_results(ts, xs, Ks, Vs, Es, Tks):
"""Returns the array of axes of a 4 panel plot of the state trajectory
versus time.

Parameters
==========
ts : array_like, shape(n,)

Values of time.
xs : array_like, shape(n, 4)

Values of the state trajectories corresponding to ``ts`` in order
[q1, q2, q3, u1, u3].

Returns

(continues on next page)

314 Chapter 22. Energy and Power

Learn Multibody Dynamics

(continued from previous page)
=======
axes : ndarray, shape(3,)

Matplotlib axes for each panel.

"""
fig, axes = plt.subplots(6, 1, sharex=True)

fig.set_size_inches((10.0, 6.0))

axes[0].plot(ts, xs[:, 0]) # q1(t)
axes[1].plot(ts, np.rad2deg(xs[:, 1:3])) # q2(t), q3(t)
axes[2].plot(ts, xs[:, 3]) # u1(t)
axes[3].plot(ts, np.rad2deg(xs[:, 4])) # u3(t)
axes[4].plot(ts, Ks)
axes[4].plot(ts, Vs)
axes[4].plot(ts, Es)
axes[5].plot(ts, Tks)

axes[0].legend(['q_1'])
axes[1].legend(['q_2', 'q_3'])
axes[2].legend(['u_1'])
axes[3].legend(['u_3'])
axes[4].legend(['K', 'V', 'E'])
axes[5].legend(['T_k'])

axes[0].set_ylabel('Distance [m]')
axes[1].set_ylabel('Angle [deg]')
axes[2].set_ylabel('Speed [m/s]')
axes[3].set_ylabel('Angular Rate [deg/s]')
axes[4].set_ylabel('Energy [J]')
axes[5].set_ylabel('Torque [N-m]')
axes[5].set_xlabel('Time [s]')

fig.tight_layout()

return axes

def setup_animation_plot(ts, xs, p):
"""Returns objects needed for the animation.

Parameters
==========
ts : array_like, shape(n,)

Values of time.
xs : array_like, shape(n, 4)

Values of the state trajectories corresponding to ``ts`` in order
[q1, q2, q3, u1].

p : array_like, shape(?,)

"""

x, y, _ = eval_point_coords(xs[0, :3], p)

fig, ax = plt.subplots()
fig.set_size_inches((10.0, 10.0))
ax.set_aspect('equal')

(continues on next page)

22.7. Simulation Setup 315

Learn Multibody Dynamics

(continued from previous page)
ax.grid()

lines, = ax.plot(x, y, color='black',
marker='o', markerfacecolor='blue', markersize=10)

title_text = ax.set_title('Time = {:1.1f} s'.format(ts[0]))
ax.set_xlim((-0.5, 0.5))
ax.set_ylim((0.0, 1.5))
ax.set_xlabel('x [m]')
ax.set_ylabel('y [m]')
ax.set_aspect('equal')

return fig, ax, title_text, lines

def animate_linkage(ts, xs, p):
"""Returns an animation object.

Parameters
==========
ts : array_like, shape(n,)
xs : array_like, shape(n, 4)

x = [q1, q2, q3, u1]
p : array_like, shape(6,)

p = [la, lb, lc, ln, m, g]

"""
setup the initial figure and axes
fig, ax, title_text, lines = setup_animation_plot(ts, xs, p)

precalculate all of the point coordinates
coords = []
for xi in xs:

coords.append(eval_point_coords(xi[:3], p))
coords = np.array(coords)

define the animation update function
def update(i):

title_text.set_text('Time = {:1.1f} s'.format(ts[i]))
lines.set_data(coords[i, 0, :], coords[i, 1, :])

close figure to prevent premature display
plt.close()

create and return the animation
return FuncAnimation(fig, update, len(ts))

316 Chapter 22. Energy and Power

Learn Multibody Dynamics

22.8 Conservative Simulation

For the first simulation, let’s disable the ground reaction force and the passive and active knee behavior and simply let the
leg fall in space.

p_vals = np.array([
0.101, # Ia,
0.282, # Ib,
0.0, # cf,
0.0, # ck,
0.387, # da,
0.193, # db,
9.81, # g,
0.0, # kf,
0.0, # kk,
0.611, # la,
0.424, # lb,
6.769, # ma,
17.01, # mb,
3.0, # mf,
32.44, # mu

])

x0, xd0 = setup_initial_conditions(0.2, np.deg2rad(20.0), 0.0, 0.0)

def eval_r(t, x, p):
return [0.0] # [Tk]

t0, tf, fps = 0.0, 0.5, 30
ts_dae, xs_dae, Ks, Vs, Es, Tks = simulate(t0, tf, fps, x0, xd0, p_vals, eval_r)

HTML(animate_linkage(ts_dae, xs_dae, p_vals).to_jshtml(fps=fps))

<IPython.core.display.HTML object>

plot_results(ts_dae, xs_dae, Ks, Vs, Es, Tks);

22.8. Conservative Simulation 317

Learn Multibody Dynamics

With no dissipation and only conservative forces acting on the system (gravity), the total energy E should stay constant,
which it does. Checking whether energy remains constant is a useful for sussing out whether your model is likely valid.
So far so good for us.

22.9 Conservative Simulation with Ground Spring

For the second simulation of this model we will do the same thing but add only the conservative ground-foot stiffness
force by setting kf = 5× 107.

p_vals = np.array([
0.101, # Ia,
0.282, # Ib,
0.0, # cf,
0.0, # ck,
0.387, # da,
0.193, # db,
9.81, # g,
5e7, # kf,
0.0, # kk,
0.611, # la,
0.424, # lb,
6.769, # ma,
17.01, # mb,
3.0, # mf,
32.44, # mu

])

t0, tf, fps = 0.0, 0.3, 100
ts_dae, xs_dae, Ks, Vs, Es, Tks = simulate(t0, tf, fps, x0, xd0, p_vals, eval_r)

318 Chapter 22. Energy and Power

Learn Multibody Dynamics

HTML(animate_linkage(ts_dae, xs_dae, p_vals).to_jshtml(fps=fps))

<IPython.core.display.HTML object>

plot_results(ts_dae, xs_dae, Ks, Vs, Es, Tks);

Now we get a bouncing jumper. This system should also still be conservative and we see that the energy stored in the foot
spring is consumed from the loss of kinetic energy as the velocity goes to zero and that total energy is constant.

22.10 Nonconservative Simulation

Now we will give some damping to the Hunt-Crossely model by setting cf = 1× 105.

p_vals = np.array([
0.101, # Ia,
0.282, # Ib,
1e5, # cf,
0.0, # ck,
0.387, # da,
0.193, # db,
9.81, # g,
5e7, # kf,
0.0, # kk,
0.611, # la,
0.424, # lb,
6.769, # ma,
17.01, # mb,
3.0, # mf,

(continues on next page)

22.10. Nonconservative Simulation 319

Learn Multibody Dynamics

(continued from previous page)
32.44, # mu

])

t0, tf, fps = 0.0, 0.3, 100
ts_dae, xs_dae, Ks, Vs, Es, Tks = simulate(t0, tf, fps, x0, xd0, p_vals, eval_r)

HTML(animate_linkage(ts_dae, xs_dae, p_vals).to_jshtml(fps=fps))

<IPython.core.display.HTML object>

plot_results(ts_dae, xs_dae, Ks, Vs, Es, Tks);

Now we see a clear energy dissipation from the system due to the foot-ground collision, i.e. the drop in E.

22.11 Simulation with Passive Knee Torques

In this simulation, we include some passive stiffness and damping at the knee joint.

p_vals = np.array([
0.101, # Ia,
0.282, # Ib,
1e5, # cf,
30.0, # ck,
0.387, # da,
0.193, # db,
9.81, # g,
5e7, # kf,

(continues on next page)

320 Chapter 22. Energy and Power

Learn Multibody Dynamics

(continued from previous page)
10.0, # kk,
0.611, # la,
0.424, # lb,
6.769, # ma,
17.01, # mb,
3.0, # mf,
32.44, # mu

])

x0, xd0 = setup_initial_conditions(0.0, np.deg2rad(5.0), 0.0, 0.0)

t0, tf, fps = 0.0, 3.0, 60
ts_dae, xs_dae, Ks, Vs, Es, Tks = simulate(t0, tf, fps, x0, xd0, p_vals, eval_r)

HTML(animate_linkage(ts_dae, xs_dae, p_vals).to_jshtml(fps=fps))

<IPython.core.display.HTML object>

plot_results(ts_dae, xs_dae, Ks, Vs, Es, Tks);

Notice that the knee collapses more slowly due to the damping and in the totarl energy plot the energy loss due to the
non-conservative knee damping can be clearly seen.

22.11. Simulation with Passive Knee Torques 321

Learn Multibody Dynamics

22.12 Simulation with Active Knee Torques

Now that we likely have a reasonable passive model of a jumper we can try to make it jump by added energy to the system
through the knee torque Tk. We have a symbol for the specified time varying quantity and the simulation code has been
designed above to accept a function that calculates Tk at any time instance. We’ll let the thigh fall and then give a constant
torque to drive the thigh back up for a just two tenths of a second.

def eval_r(t, x, p):

if t < 0.9:
Tk = [0.0]

elif t > 1.1:
Tk = [0.0]

else:
Tk = [900.0]

return Tk

p_vals = np.array([
0.101, # Ia,
0.282, # Ib,
1e5, # cf,
30.0, # ck,
0.387, # da,
0.193, # db,
9.81, # g,
5e7, # kf,
10.0, # kk,
0.611, # la,
0.424, # lb,
6.769, # ma,
17.01, # mb,
3.0, # mf,
32.44, # mu

])

We’ll start the simulation with the foot on the ground and with a slight knee bend.

x0, xd0 = setup_initial_conditions(0.0, np.deg2rad(5.0), 0.0, 0.0)

t0, tf, fps = 0.0, 2.0, 60
ts_dae, xs_dae, Ks, Vs, Es, Tks = simulate(t0, tf, fps, x0, xd0, p_vals, eval_r)

HTML(animate_linkage(ts_dae, xs_dae, p_vals).to_jshtml(fps=fps))

<IPython.core.display.HTML object>

plot_results(ts_dae, xs_dae, Ks, Vs, Es, Tks);

322 Chapter 22. Energy and Power

Learn Multibody Dynamics

The final simulation works and gives a reasonably realistic looking jump. When examining the total energy E you can
see how the applied knee torque adds energy to the system to cause the jump.

22.12. Simulation with Active Knee Torques 323

Learn Multibody Dynamics

324 Chapter 22. Energy and Power

CHAPTER

TWENTYTHREE

EQUATIONS OF MOTION WITH THE LAGRANGE METHOD

Note: You can download this example as a Python script: lagrange.py or Jupyter Notebook: lagrange.ipynb.

import sympy as sm
import sympy.physics.mechanics as me
me.init_vprinting(use_latex='mathjax')

class ReferenceFrame(me.ReferenceFrame):

def __init__(self, *args, **kwargs):

kwargs.pop('latexs', None)

lab = args[0].lower()
tex = r'\hat{{{}}}_{}'

super(ReferenceFrame, self).__init__(*args,
latexs=(tex.format(lab, 'x'),

tex.format(lab, 'y'),
tex.format(lab, 'z')),

**kwargs)
me.ReferenceFrame = ReferenceFrame

23.1 Learning Objectives

After completing this chapter readers will be able to:
• Derive the Lagrangian for a system of particles and rigid bodies
• Use the Euler-Lagrange equation to derive equations of motions given a Lagrangian
• Use the method of Lagrange multipliers to add constraints to the equations of motions
• Know how to determine the generalized momenta of a system.

325

Learn Multibody Dynamics

23.2 Introduction

This book has already discussed two methods to derive the equations of motion of multibody systems: Newton-Euler
and Kane’s method. This chapter will add a third: the Lagrange method, originally developed by Joseph-Louis Lagrange.
These materials focus on Engineering applications for multi-body systems, and therefore build the Lagrange method
around the terms found earlier in Kane’s equations. In other textbooks, the Lagrange method is often derived from the
Variational principles, such as virtual work or the principle of least action. A good starting point for studying the physical
and mathematical background of the Lagrange approach is [Lanczos1970].

23.3 Inertial forces from kinetic energy

In Kane’s method the negated generalized inertial forces equal the applied forces, see Unconstrained Equations of Motion.
A large part of Kane’s method of deriving the equations of motions for a system is involved with finding the generalized
inertial forces.
As an alternative, the following equation also calculates the generalized inertial forces of a system, now by starting from
the kinetic energyK(˙̄q, q̄) expressed as function of the generalized coordinates q̄, and their time derivatives. See Energy
and Power for the definition of kinetic energy.

−F̄ ∗
r =

d
dt

(
∂K

∂q̇r

)
− ∂K

∂qr
(23.1)

Warning: Note the two minus signs in the above equation

Note: In Kane’s method, it is possible to choose generalized speeds ū that differ from the time derivatives of the
generalized coordinates ˙̄q. By convention ū = ˙̄q is assumed when using the Lagrange method. Therefore, throughout this
chapter ˙̄q is used.

The generalized inertial forces computed in this manner are the same as when following Kane’s method, or the TMT
method used in the next chapter. This can be shown by carefully matching terms in these formulations, as is done for a a
system of point-masses in [Vallery2020].

23.3.1 Example: freely moving 3D body

This example is largely the same as the example in Body Fixed Newton-Euler Equations. A key difference is a difference
between the generalized speeds describing the rotation. In the calculation with Kane’s method, they were body-fixed
angular velocities, whereas here they are the rates of change of the Euler angles.
First, set up the generalized coordinates, reference frames and mass properties:

t = me.dynamicsymbols._t
psi,theta, phi, x, y, z = me.dynamicsymbols('psi theta phi x y z')
q = sm.Matrix([psi, theta, phi, x, y, z])
qd = q.diff(t)
qdd = qd.diff(t)
N = me.ReferenceFrame('N')
B = me.ReferenceFrame('B')
B.orient_body_fixed(N, (psi, theta, phi), 'zxy')

(continues on next page)

326 Chapter 23. Equations of Motion with the Lagrange Method

https://en.wikipedia.org/wiki/Lagrangian_mechanics
https://en.wikipedia.org/wiki/Variational_principle

Learn Multibody Dynamics

(continued from previous page)
m, Ixx, Iyy, Izz = sm.symbols('M, I_{xx}, I_{yy}, I_{zz}')
I_B = me.inertia(B, Ixx, Iyy, Izz)
q

ψ
θ
ϕ
x
y
z

 (23.2)

Then compute the kinetic energy:

N_w_B = B.ang_vel_in(N)
r_O_P = x*N.x + y*N.y + z*N.z
N_v_C = r_O_P.dt(N)
K = N_w_B.dot(I_B.dot(N_w_B))/2 + m*N_v_C.dot(N_v_C)/2
K

Ixx

(
− sin (ϕ) cos (θ)ψ̇ + cos (ϕ)θ̇

)2
2

+
Iyy

(
sin (θ)ψ̇ + ϕ̇

)2
2

+
Izz

(
sin (ϕ)θ̇ + cos (ϕ) cos (θ)ψ̇

)2
2

+
M
(
ẋ2 + ẏ2 + ż2

)
2

(23.3)

Use the kinetic energy to find the generalized inertial forces. Here we start with the generalized coordinate ψ

psid = psi.diff(t)
F_psi_s = K.diff(psid).diff(t) - K.diff(psi)

A similar derivation should be made for all generalized coordinates. We could write a loop, but there there is a method
to derive all the equations in one go. The vector of partial derivatives of a function, that is the gradient, can be created
using the jacobian() method. The generalized inertial forces can then be found like this:

K_as_matrix = sm.Matrix([K])
Fs_transposed = K_as_matrix.jacobian(qd).diff(t) - K_as_matrix.jacobian(q)
Fs = Fs_transposed.transpose()
Fs

Ixx

(
− sin (ϕ) cos (θ)ψ̇ + cos (ϕ)θ̇

)
sin (ϕ) sin (θ)θ̇ − Ixx

(
− sin (ϕ) cos (θ)ψ̇ + cos (ϕ)θ̇

)
cos (ϕ) cos (θ)ϕ̇− Ixx

(
sin (ϕ) sin (θ)ψ̇θ̇ − sin (ϕ) cos (θ)ψ̈ − sin (ϕ)ϕ̇θ̇ − cos (ϕ) cos (θ)ϕ̇ψ̇ + cos (ϕ)θ̈

)
sin (ϕ) cos (θ) + Iyy

(
sin (θ)ψ̇ + ϕ̇

)
cos (θ)θ̇ + Iyy

(
sin (θ)ψ̈ + cos (θ)ψ̇θ̇ + ϕ̈

)
sin (θ)− Izz

(
sin (ϕ)θ̇ + cos (ϕ) cos (θ)ψ̇

)
sin (ϕ) cos (θ)ϕ̇− Izz

(
sin (ϕ)θ̇ + cos (ϕ) cos (θ)ψ̇

)
sin (θ) cos (ϕ)θ̇ + Izz

(
− sin (ϕ) cos (θ)ϕ̇ψ̇ + sin (ϕ)θ̈ − sin (θ) cos (ϕ)ψ̇θ̇ + cos (ϕ) cos (θ)ψ̈ + cos (ϕ)ϕ̇θ̇

)
cos (ϕ) cos (θ)

−Ixx
(
− sin (ϕ) cos (θ)ψ̇ + cos (ϕ)θ̇

)
sin (ϕ) sin (θ)ψ̇ − Ixx

(
− sin (ϕ) cos (θ)ψ̇ + cos (ϕ)θ̇

)
sin (ϕ)ϕ̇+ Ixx

(
sin (ϕ) sin (θ)ψ̇θ̇ − sin (ϕ) cos (θ)ψ̈ − sin (ϕ)ϕ̇θ̇ − cos (ϕ) cos (θ)ϕ̇ψ̇ + cos (ϕ)θ̈

)
cos (ϕ)− Iyy

(
sin (θ)ψ̇ + ϕ̇

)
cos (θ)ψ̇ + Izz

(
sin (ϕ)θ̇ + cos (ϕ) cos (θ)ψ̇

)
sin (θ) cos (ϕ)ψ̇ + Izz

(
sin (ϕ)θ̇ + cos (ϕ) cos (θ)ψ̇

)
cos (ϕ)ϕ̇+ Izz

(
− sin (ϕ) cos (θ)ϕ̇ψ̇ + sin (ϕ)θ̈ − sin (θ) cos (ϕ)ψ̇θ̇ + cos (ϕ) cos (θ)ψ̈ + cos (ϕ)ϕ̇θ̇

)
sin (ϕ)

− Ixx(−2 sin (ϕ)θ̇−2 cos (ϕ) cos (θ)ψ̇)(− sin (ϕ) cos (θ)ψ̇+cos (ϕ)θ̇)
2 +

Iyy(2 sin (θ)ψ̈+2 cos (θ)ψ̇θ̇+2ϕ̈)
2 − Izz(sin (ϕ)θ̇+cos (ϕ) cos (θ)ψ̇)(−2 sin (ϕ) cos (θ)ψ̇+2 cos (ϕ)θ̇)

2
Mẍ
Mÿ
Mz̈

(23.4)

While these are correct equations of motion, the terms, particularly the terms involving q̈r are mangled. It is common
to extract the system mass matrixMd and velocity forces vector ḡd like before:

23.3. Inertial forces from kinetic energy 327

https://docs.sympy.org/latest/modules/matrices/matrices.html#sympy.matrices.matrices.MatrixCalculus.jacobian

Learn Multibody Dynamics

qdd_zerod = {qddr: 0 for qddr in qdd}
Md = Fs.jacobian(qdd)
gd = Fs.xreplace(qdd_zerod)
Md.simplify()
gd.simplify()
Md, gd

Ixx sin2 (ϕ) cos2 (θ) + Iyy sin2 (θ) + Izz cos2 (ϕ) cos2 (θ) (−Ixx+Izz)(sin (2ϕ−θ)+sin (2ϕ+θ))

4 Iyy sin (θ) 0 0 0
(−Ixx+Izz)(sin (2ϕ−θ)+sin (2ϕ+θ))

4 Ixx cos2 (ϕ) + Izz sin2 (ϕ) 0 0 0 0
Iyy sin (θ) 0 Iyy 0 0 0

0 0 0 M 0 0
0 0 0 0 M 0
0 0 0 0 0 M

 ,

Ixx sin (2ϕ−2θ)ϕ̇ψ̇
4 − Ixx sin (2ϕ−2θ)ψ̇θ̇

4 + Ixx sin (2ϕ+2θ)ϕ̇ψ̇
4 + Ixx sin (2ϕ+2θ)ψ̇θ̇

4 + Ixx sin (2ϕ)ϕ̇ψ̇
2 − Ixx sin (2θ)ψ̇θ̇

2 − Ixx cos (2ϕ−θ)ϕ̇θ̇
2 + Ixx cos (2ϕ−θ)θ̇2

4 − Ixx cos (2ϕ+θ)ϕ̇θ̇
2 − Ixx cos (2ϕ+θ)θ̇2

4 + Iyy sin (2θ)ψ̇θ̇ + Iyy cos (θ)ϕ̇θ̇ − Izz sin (2ϕ−2θ)ϕ̇ψ̇
4 + Izz sin (2ϕ−2θ)ψ̇θ̇

4 − Izz sin (2ϕ+2θ)ϕ̇ψ̇
4 − Izz sin (2ϕ+2θ)ψ̇θ̇

4 − Izz sin (2ϕ)ϕ̇ψ̇
2 − Izz sin (2θ)ψ̇θ̇

2 + Izz cos (2ϕ−θ)ϕ̇θ̇
2 − Izz cos (2ϕ−θ)θ̇2

4 + Izz cos (2ϕ+θ)ϕ̇θ̇
2 + Izz cos (2ϕ+θ)θ̇2

4
Ixx sin (2ϕ−2θ)ψ̇2

8 − Ixx sin (2ϕ+2θ)ψ̇2

8 − Ixx sin (2ϕ)ϕ̇θ̇ + Ixx sin (2θ)ψ̇2

4 − Ixx cos (2ϕ−θ)ϕ̇ψ̇
2 − Ixx cos (2ϕ+θ)ϕ̇ψ̇

2 − Iyy sin (2θ)ψ̇2

2 − Iyy cos (θ)ϕ̇ψ̇ − Izz sin (2ϕ−2θ)ψ̇2

8 + Izz sin (2ϕ+2θ)ψ̇2

8 + Izz sin (2ϕ)ϕ̇θ̇ + Izz sin (2θ)ψ̇2

4 + Izz cos (2ϕ−θ)ϕ̇ψ̇
2 + Izz cos (2ϕ+θ)ϕ̇ψ̇

2

−Ixx
(
sin (ϕ)θ̇ + cos (ϕ) cos (θ)ψ̇

)(
sin (ϕ) cos (θ)ψ̇ − cos (ϕ)θ̇

)
+ Iyy cos (θ)ψ̇θ̇ + Izz

(
sin (ϕ)θ̇ + cos (ϕ) cos (θ)ψ̇

)(
sin (ϕ) cos (θ)ψ̇ − cos (ϕ)θ̇

)
0
0
0

(23.5)

23.4 Conservative Forces

Recall from Energy and Power that conservative forces, can be expressed using the gradient of a scalar function of the
generalized coordinates, known as the potential energy V (q̄):

F̄r = − ∂V

∂qr
(23.6)

Warning: Note the minus sign in the above equation.

Some examples of conservative forces are:
• a uniform gravitational field, for example on the surface of the earth, with potential V = mgh(q̄),
• gravity from Newton’s universal gravitation, with potential V = −Gm1m2

r(q̄) ,

• a linear spring, with potential V = 1
2k(l(q̄)− l0)

2.
For conservative forces, it is often convenient to derive the applied forces via the potential energy.

23.5 The Lagrange Method

Both the equation for computing the inertial forces from the kinetic energy, and the equation for computing the applied
forces from a potential energy have a term in them with the partial derivative with respect to the generalized coordi-
nate. Furtermore, the potential energy does not depend on the generalized speeds. Therefore, the resulting (inertial and
conservative applied) forces can be derived in one go, by combining the two equations.
Step 1. Compute the so called Lagrangian L, the difference between the kinetic energy and potential energy:

L = K − V (23.7)

328 Chapter 23. Equations of Motion with the Lagrange Method

https://en.wikipedia.org/wiki/Conservative_force
https://en.wikipedia.org/wiki/Potential_energy
https://en.wikipedia.org/wiki/Lagrangian

Learn Multibody Dynamics

Step 2. Use the Euler-Lagrange equations (the name for the equation (23.1)) to find the equations of motion:

d
dt

(
∂L

∂q̇r

)
− ∂L

∂qr
= Fr, (23.8)

while being careful to include a force either in the applied forces F̄r, or in the potential energy V , but never in both.

23.5.1 Example: Double pendulum with springs and sliding pointmass

This example will use the Lagrange method to derive the equations of motion for the system introduced in Example of
Kane’s Equations. The description of the system is shown again in Fig. 23.1.

Fig. 23.1: Three dimensional pendulummade up of two pinned rods and a sliding mass on rodB. Each degree of freedom
is resisted by a linear spring. When the generalized coordinates are all zero, the two rods are perpendicular to each other.

The first step is to define the relevant variables, constants and frames. This step is the same as for Kane’s method.

Frames and Bodies Setup

m, g, kt, kl, l = sm.symbols('m, g, k_t, k_l, l')
q1, q2, q3 = me.dynamicsymbols('q1, q2, q3')

N = me.ReferenceFrame('N')
A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')

(continues on next page)

23.5. The Lagrange Method 329

Learn Multibody Dynamics

(continued from previous page)

A.orient_axis(N, q1, N.z)
B.orient_axis(A, q2, A.x)

O = me.Point('O')
Ao = me.Point('A_O')
Bo = me.Point('B_O')
Q = me.Point('Q')

Ao.set_pos(O, l/2*A.x)
Bo.set_pos(O, l*A.x)
Q.set_pos(Bo, q3*B.y)

O.set_vel(N, 0)

I = m*l**2/12
I_A_Ao = I*me.outer(A.y, A.y) + I*me.outer(A.z, A.z)
I_B_Bo = I*me.outer(B.x, B.x) + I*me.outer(B.z, B.z)

Then, set up the Lagrangian:

t = sm.symbols('t')
q = sm.Matrix([q1, q2, q3])
qd = q.diff(t)
qdd = qd.diff(t)

K = m/2*(Ao.vel(N).dot(Ao.vel(N)) + Bo.vel(N).dot(Bo.vel(N)) + Q.vel(N).dot(Q.
↪→vel(N))) + (

A.ang_vel_in(N).dot(I_A_Ao.dot(A.ang_vel_in(N))) + B.ang_vel_in(N).dot(I_B_Bo.
↪→dot(B.ang_vel_in(N)))
)/2
V = m*g*(Ao.pos_from(O).dot(-N.x) + Bo.pos_from(O).dot(-N.x)) + kt/2*(q1**2) + kt/
↪→2*q2**2 + kl/2*q3**2

L = sm.Matrix([K - V])
sm.trigsimp(L)

[
3glm cos (q1)

2 − klq
2
3

2 − ktq
2
1

2 − ktq
2
2

2 +
l2m cos2 (q2)q̇

2
1

24 +
7l2mq̇21

6 +
l2mq̇22
24 − lmq3 sin (q2)q̇1q̇2 + lm cos (q2)q̇1q̇3 + mq23 cos2 (q2)q̇

2
1

2 +
mq23 q̇

2
2

2 +
mq̇23
2

]
(23.9)

Finally, derive the equations of motion:

left_hand_side = L.jacobian(qd).diff(t) - L.jacobian(q)
qdd_zerod = {qddr: 0 for qddr in qdd}
Md = left_hand_side.jacobian(qdd)
gd = left_hand_side.xreplace(qdd_zerod)
me.find_dynamicsymbols(Md), me.find_dynamicsymbols(gd)

({q2, q3} , {q1, q2, q3, q̇1, q̇2, q̇3}) (23.10)

The mass matrix Md only depends on q̄, and ḡd depends on ˙̄q and q̄, just as in Kane’s method. Note that ḡd now
combines the effects of the velocity force vector and the conservative forces. In this setting, ḡd is often called the dynamic
bias.

330 Chapter 23. Equations of Motion with the Lagrange Method

Learn Multibody Dynamics

It is often useful to use a vector of intermediate variables when finding the Euler-Lagrange equations. The variables are
defined as:

pr =
∂L

∂q̇r
(23.11)

The variables are collected in a vector p̄.
They are called the generalized momenta, as they coincide with linear momentum in the case of a Lagrangian describing
a particle. Similar to the situation in the dynamics of particles, there can be conservation of generalized momentum. This
is the case for the generalized momentum associated with ignorable coordinates, as defined in Equations of Motion with
Nonholonomic Constraints.
For the example pendulum, the generalized momenta are calculated as:

p = L.jacobian(qd).transpose()
sm.trigsimp(p)

m
(
l2 cos2 (q2)q̇1

12 + 7l2q̇1
3 − lq3 sin (q2)q̇2 + l cos (q2)q̇3 + q23 cos2 (q2)q̇1

)
m
(
l2q̇2
12 − lq3 sin (q2)q̇1 + q23 q̇2

)
m (l cos (q2)q̇1 + q̇3)

 (23.12)

23.6 Constrained equations of motion

When using Kane’s method, constraints are handled by dividing the generalized speeds into two sets: the dependent and
independent generalized speeds. Depending on the type of constraints, the dependent generalized speeds are eliminated by
solving the constraint equation (for non-holonomic constraints) or the time derivative of the constraint equation (holonomic
constraints). Kane’s method only gives rise to p = n − m dynamical equations, one for each independent generalized
speed.
The Lagrange method gives rise to n dynamical equations, one for each generalized coordinate. To eliminate the con-
straints, and end up with the right number of equations (n −m, one for each degree of freedom), both the generalized
speeds and the generalized coordinates should be solved using the constraint equation. For non-holonomic constraints,
this elimination is not possible (by the definition of non-holonomic), and for holonomic constraints this elimination re-
quires solving often difficult non-linear equations for the generalized coordinates. The method of elimination is therefore
not useful within the Lagrange method.
Instead, constraints are handled using a generalized version of the approach in Exposing Noncontributing Forces. First
the constraints are omitted. Then a constraint force is added, with a known direction, but unknown magnitude. Finally,
the (second) time derivative of the constraint equation is then appended to the equations found with the Euler-Lagrange
equation.
For example, consider a particle of mass m and position r̄P/O = q1n̂x + q2n̂y + q3n̂z on a slope q1 = q2. The
unconstrained Lagrangian is L = 1

2m(q̇21 + q̇22 + q̇23) − mgq3. The constraint force is perpendicular to the slope, so
is described as F̄ = Fn̂x − Fn̂y . The appended equation is the second time derivative of the constraint equation
q̈1 − q̈2 = 0. Combining all, gives:

mq̈1 = F
mq̈2 = −F

mq̈3 +mg = 0
q̈1 − q̈2= 0

(23.13)

23.6. Constrained equations of motion 331

Learn Multibody Dynamics

This can be put in matrix-form, by extracting the unknown acceleration and force magnitude:
m 0 0 −1
0 m 0 1
0 0 m 0
1 −1 0 0

q̈1
q̈2
q̈3
F

 =

0
0

−mg
0

 (23.14)

It can be challenging to find the direction of the constraint force from the geometry of the system directly. There is a
trick, called the method of the Lagrange multipliers, to quickly find the correct generalized forces associated with the
constraint forces.
Given a motion constraint (time derivatives of configuration constraint or a nonholonomic constraint) in the general form∑

r

ar(q̄)q̇r = 0 (23.15)

The generalized force is found as:

Fr = λar(q̄) (23.16)

Here λ is a variable encoding the magnitude of the constraint force. It is called the Lagrange multiplier. The same λ is
used for each r, that is, each constraint has a single associated Lagrange multiplier.
Due to how it is constructed, the power produced by the constraint force is always zero, as expected.

P =
∑
r

Fr q̇r =
∑

λar(q̄)q̇r = λ
∑

ar(q̄)q̇r = λ · 0 (23.17)

For example, consider the pointmass to be constrained to move in a bowl q21+q22+q23−1 = 0, Fig. 23.2. Taking the time
derivative gives: a1 = 2q1, a2 = 2q2, and a3 = 2q3. This results in generalized reaction forces F1 = 2λq1, F2 = 2λq2
and F3 = 2λq3.

Fig. 23.2: Point mass P constrained to the surface of a spherical bowl with radius 1 and constraint force measure numbers
F1, F2, F3.

Often, there are multiple constraints on the same system. For convenience, the handling of these constraints can be com-
bined. Consider them+M dimensional general constraint equations consisting of the time derivatives of the holonomic

332 Chapter 23. Equations of Motion with the Lagrange Method

https://en.wikipedia.org/wiki/Lagrange_multiplier

Learn Multibody Dynamics

constraints and/or the non-holonomic constraints:

f̄hn(q̄, ¯̇q) = Mhn
¯̇q = 0, (23.18)

the combined constraint forces are given as:

F̄r = MT
hnλ̄, (23.19)

where λ̄ is a vector ofm+M Lagrange multipliers, one for each constraint (row inMhn).

23.6.1 Example: turning the freely floating body discussed earlier into a rolling
sphere.

The non-slip condition of the rolling sphere is split into three constraints: the velocity of the contact point (G) is zero in
the n̂x, the n̂y and the n̂z direction. The first two constraints are non-holonomic, the last constraint is the time derivative
of a holonomic constraint. All three constraints are enforced by contact forces in their respective directions.
The contact point can be found according by r̄G/C = −rn̂z . By using the Velocity Two Point Theorem, the following
constraints are found.

n̄x · (N v̄C + N ω̄B × (−rn̂z)) = 0
n̄y · (N v̄C + N ω̄B × (−rn̂z)) = 0
n̄z · (N v̄C + N ω̄B × (−rn̂z)) = 0

(23.20)

These can be used to derive the constraint force and the additional equations using the Lagrange-multiplier method as
shown below. Note that here only the first time derivative of the constraint equation is used, again because the second
time derivatives of the generalized coordinates appear.

Frames and Body Setup
Setting up reference frames

psi,theta, phi, x, y, z = me.dynamicsymbols('psi theta phi x y z')
N = me.ReferenceFrame('N')
B = me.ReferenceFrame('B')
B.orient_body_fixed(N, (psi, theta, phi), 'zxy')

Mass and inertia
m, Ixx, Iyy, Izz = sm.symbols('M, I_{xx}, I_{yy}, I_{zz}')
I_B = me.inertia(B, Ixx, Iyy, Izz)

Finding the kinetic energy:

omega_B = B.ang_vel_in(N)
r_com = x*N.x + y*N.y + z*N.z
v_com = r_com.dt(N)
K = omega_B.dot(I_B.dot(omega_B))/2 + m*v_com.dot(v_com)/2

Deriving equations of motion:

t = me.dynamicsymbols._t
q = sm.Matrix([psi, theta, phi, x, y, z])
qd = q.diff(t)
qdd = qd.diff(t)

L = sm.Matrix([K])

(continues on next page)

23.6. Constrained equations of motion 333

Learn Multibody Dynamics

(continued from previous page)
left_hand_side = L.jacobian(qd).diff(t) - L.jacobian(q)

qdd_zerod = {qddr: 0 for qddr in qdd}
Md = left_hand_side.jacobian(qdd)
gd = left_hand_side.xreplace(qdd_zerod)

To make this free floating body a rolling wheel, three constraints are needed: the velocity of the contact point should be
zero in n̂x, n̂y and n̂x direction.

lambda1, lambda2, lambda3 = me.dynamicsymbols('lambda1, lambda2, lambda3')
constraint = (v_com + B.ang_vel_in(N).cross(-N.z)).to_matrix(N)
M_hn = constraint.jacobian(qd)
diff_constraint = constraint.diff(t)
sm.trigsimp(constraint)

− sin (ψ)θ̇ − cos (ψ) cos (θ)ϕ̇+ ẋ

− sin (ψ) cos (θ)ϕ̇+ cos (ψ)θ̇ + ẏ
ż

 (23.21)

This constraint information must then be added to the original equations. To do so, we make use of a useful fact.

diff_constraint.jacobian(qdd) - M_hn

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (23.22)

This equality is true for all constraints, as can easily be shown by taking the time derivative of the constraint equation,
using the chain rule.
The combined equations can now be written in a block matrix form:[

Md −MT
hn

Mhn 0

] [
¨̄q
λ̄

]
=

[
F̄r − ḡd
−∂Mhn ˙̄q

∂q̄
˙̄q

]
, (23.23)

where ḡ is the dynamic bias, and the last term on the right hand side, called the constraint bias, can be quickly computed
as:

constraint_bias = diff_constraint.xreplace({qddr : 0 for qddr in qdd})

We call the block matrix called the extended mass matrix, and the vector on the right hand side the extended dynamic
bias.
With these n + m + M equations, it is possible to solve for ¨̄q and λ. It is therefore possible to integrate/simulate the
system directly. However, because only the second derivative of the constraint is satisfied, numerical errors can build up,
so the constraint is not satisfied. It is better to use a differential algebraic solver, as discussed in Equations of Motion with
Holonomic Constraints. See the scikit.ode documentation for a worked example.
The method of the Lagrange multiplier can of course also be used within Kane’s method. However, it increases the
number of equations, which is why the elimination approach is often preferred there. An exception being scenarios where
the constraint force itself is a useful output, for instance to check no-slip conditions in case of limited friction.

334 Chapter 23. Equations of Motion with the Lagrange Method

https://github.com/bmcage/odes/blob/master/ipython_examples/Planar%20Pendulum%20as%20DAE.ipynb

Learn Multibody Dynamics

23.7 Lagrange’s vs Kane’s

The is book has now presented two alternatives to the Newton-Euler method: Kane’s method and Lagrange’s method.
This raises the questions: when should each alternative method be used?
For constrained systems, Kane’s method has the advantage that the equations of motion are given for a set of independent
generalized speeds only. In other words, Kane’s method gives a minimal set of equations. This can give rise to simpli-
fied equations, additional insight, and numerically more efficient simulation. This also gives the benefit that Lagrange
multipliers are not needed when solving constrained systems with Kane’s method.
Furthermore, the connection fromKane’s method to vectormechanics, that is, Newton’s laws, is clearer, which can provide
additional insight, and make it easier to encorporate non-conservative forces such as friction.
On the other hand, the Lagrange method only requires energies as input, for which only the velocities of the bodies are
needed. Therefore, it can be simpler to derive than the accelerations which are needed for Kane’s method.
Furthermore, the Lagrange method results in a set of equations with well understood structures and properties. These
structures and properties are not studied further in these materials. A starting point for further study is Noether’s theorem,
which extends the idea of ignorable coordinates to find conserved quantities like momentum and energy.

23.7. Lagrange’s vs Kane’s 335

https://en.wikipedia.org/wiki/Noether%27s_theorem_

Learn Multibody Dynamics

336 Chapter 23. Equations of Motion with the Lagrange Method

CHAPTER

TWENTYFOUR

UNCONSTRAINED EQUATIONS OF MOTION WITH THE TMT
METHOD

Note: You can download this example as a Python script: tmt.py or Jupyter Notebook: tmt.ipynb.

import numpy as np
import sympy as sm
import sympy.physics.mechanics as me
me.init_vprinting(use_latex='mathjax')

class ReferenceFrame(me.ReferenceFrame):

def __init__(self, *args, **kwargs):

kwargs.pop('latexs', None)

lab = args[0].lower()
tex = r'\hat{{{}}}_{}'

super(ReferenceFrame, self).__init__(*args,
latexs=(tex.format(lab, 'x'),

tex.format(lab, 'y'),
tex.format(lab, 'z')),

**kwargs)
me.ReferenceFrame = ReferenceFrame

There are several mathematical methods available to formulate the equations of motion of a multibody system. These
different methods offer various advantages and disadvantages over Newton and Euler’s original formulations and among
each other. For example, Joseph-Louis Lagrange developed a way to arrive at the equations of motion from the de-
scriptions of kinetic and potential energy of the system. Sir William Hamilton then reformulated Lagrange’s approach
in terms of generalized momenta instead of energy. Since then, Gibbs & Appell, Kane [Kane1985], and others have
proposed more methods. In this chapter, we present one of these alternative methods called the “TMT Method”. The
details and derivation of the TMT Method can be found in [Vallery2020] .
Vallery and Schwab show how the collection of Newton-Euler equations for each individual rigid body can be transformed
into the reduced dynamical differential equations associated with the generalized coordinates, speeds, and accelerations
using the T matrix. This T matrix is populated by the measure numbers of the partial velocities expressed in the inertial
reference frame.
Given ν rigid bodies in a multibody system described by n generalized coordinates and generalized speeds, the velocities
of each mass center and the angular velocities of each body in an inertial reference frame N can be written in column

337

https://en.wikipedia.org/wiki/Classical_mechanics
https://en.wikipedia.org/wiki/Lagrangian_mechanics
https://en.wikipedia.org/wiki/Hamiltonian_mechanics
https://en.wikipedia.org/wiki/Appell%27s_equation_of_motion

Learn Multibody Dynamics

vector v̄ form by extracting the measure numbers in the inertial reference frame N of each velocity term.

v̄(ū, q̄, t) =

N v̄B1o · n̂x
N v̄B1o · n̂y
N v̄B1o · n̂z
N ω̄B1 · n̂x
N ω̄B1 · n̂y
N ω̄B1 · n̂z

...
N v̄Bνo · n̂x
N v̄Bνo · n̂y
N v̄Bνo · n̂z
N ω̄Bν · n̂x
N ω̄Bν · n̂y
N ω̄Bν · n̂z

∈ R6ν (24.1)

The measure numbers of the partial velocities with respect to each of the n generalized speeds in ū can be efficiently
found by taking the Jacobian of v̄ with respect to the generalized speeds, which we will name matrix T.

T = Jv̄,ū ∈ R6ν×n where v̄ = Tū (24.2)

For each set of six rows in v̄ tied to a single rigid body, the associated mass and inertia for that body can be written as:

MB1
=

mB1
0 0 0 0 0

0 mB1
0 0 0 0

0 0 mB1 0 0 0

0 0 0 ĬB1/B1o · n̂xn̂x ĬB1/B1o · n̂xn̂y ĬB1/B1o · n̂xn̂z
0 0 0 ĬB1/B1o · n̂yn̂x ĬB1/B1o · n̂yn̂y ĬB1/B1o · n̂yn̂z
0 0 0 ĬB1/B1o · n̂zn̂x ĬB1/B1o · n̂zn̂y ĬB1/B1o · n̂zn̂z

 (24.3)

Multiplying the velocities with this matrix gives the momenta of each rigid body.

MB1 v̄B1 =

p̄B1o · n̂x
p̄B1o · n̂y
p̄B1o · n̂z

H̄B1/B1o · n̂x
H̄B1/B1o · n̂y
H̄B1/B1o · n̂z

 (24.4)

The matrices for each rigid body can then be assembled into a matrix for the entire set of rigid bodies.

M =

MB1 0 . . . 0

0 MB2
. . .

...
...

...
0 0 . . . MBν

 (24.5)

Allowing the momenta of all the rigid bodies to be found by matrix multiplication ofMv̄.
A vector F̄ of resultant forces and torques of couples acting on each rigid body can be formed in a similar manner as v̄,

338 Chapter 24. Unconstrained Equations of Motion with the TMT Method

Learn Multibody Dynamics

by extracting the measure numbers in the inertial reference frame.

F̄ =

R̄B1o · n̂x
R̄B1o · n̂y
R̄B1o · n̂z
T̄B1 · n̂x
T̄B1 · n̂y
T̄B1 · n̂z

...
R̄B2o · n̂x
R̄B2o · n̂y
R̄B2o · n̂z
T̄B2 · n̂x
T̄B2 · n̂y
T̄B2 · n̂z

(24.6)

The dynamical differential equations for the entire Newton-Euler system are then:

dMv̄
dt

= F̄ ∈ R6ν (24.7)

We know that selecting n generalized coordinates for such a system allows us to write the dynamical differential equations
as a set of n equations which is, in general, much smaller than 6ν equations due to the large number of holonomic
constraints that represent the connections of all the bodies in the system. Vallery and Schwab show that the mass matrix
Md for this reduced set of equations can be efficiently calculated using the T matrix ([Vallery2020], pg. 349):

Md = −TTMT (24.8)

and that the forces not proportional to the generalized accelerations is found with:

ḡd = TT
(
F̄ − ḡ

)
(24.9)

where1:

ḡ =
dMv̄
dt

∣∣∣∣
˙̄u=0̄

(24.10)

The equations of motion then take this form:

0̄ = Md ˙̄u+ ḡd = −TTMT ˙̄u+ TT
(
F̄ − ḡ

)
(24.11)

These equations are equivalent to Kane’s Equations.

24.1 Example Formulation

Let us return once again to the holonomic system introduced in Example of Kane’s Equations.
Start by introducing the variables.

1 Note that my ḡ is slightly different than the one presented in [Vallery2020] to make sure the time derivative of the angular momenta are properly
calculated.

24.1. Example Formulation 339

Learn Multibody Dynamics

Fig. 24.1: Three dimensional pendulummade up of two pinned rods and a sliding mass on rodB. Each degree of freedom
is resisted by a linear spring. When the generalized coordinates are all zero, the two rods are perpendicular to each other.

340 Chapter 24. Unconstrained Equations of Motion with the TMT Method

Learn Multibody Dynamics

m, g, kt, kl, l = sm.symbols('m, g, k_t, k_l, l')
q1, q2, q3 = me.dynamicsymbols('q1, q2, q3')
u1, u2, u3 = me.dynamicsymbols('u1, u2, u3')
t = me.dynamicsymbols._t

q = sm.Matrix([q1, q2, q3])
u = sm.Matrix([u1, u2, u3])
p = sm.Matrix([g, kl, kt, l, m])
q, u, p

q1q2
q3

 ,
u1u2
u3

 ,

g
kl
kt
l
m

 (24.12)

The derivation of the kinematics is done in the same way as before.

N = me.ReferenceFrame('N')
A = me.ReferenceFrame('A')
B = me.ReferenceFrame('B')

A.orient_axis(N, q1, N.z)
B.orient_axis(A, q2, A.x)

A.set_ang_vel(N, u1*N.z)
B.set_ang_vel(A, u2*A.x)

O = me.Point('O')
Ao = me.Point('A_O')
Bo = me.Point('B_O')
Q = me.Point('Q')

Ao.set_pos(O, l/2*A.x)
Bo.set_pos(O, l*A.x)
Q.set_pos(Bo, q3*B.y)

O.set_vel(N, 0)
Ao.v2pt_theory(O, N, A)
Bo.v2pt_theory(O, N, A)
Q.set_vel(B, u3*B.y)
Q.v1pt_theory(Bo, N, B)

Ao.vel(N), A.ang_vel_in(N), Bo.vel(N), B.ang_vel_in(N), Q.vel(N)

(
lu1
2
ây, u1n̂z, lu1ây, u2âx + u1n̂z, −q3u1 cos (q2)b̂x + u3b̂y + q3u2b̂z + lu1ây

)
(24.13)

Only the contributing forces need be declared (noncontributing would cancel out in the TMT transformation if included).
Do not forget Newton’s Third Law and be sure to include the equal and opposite reactions.

R_Ao = m*g*N.x
R_Bo = m*g*N.x + kl*q3*B.y
R_Q = m/4*g*N.x - kl*q3*B.y

(continues on next page)

24.1. Example Formulation 341

Learn Multibody Dynamics

(continued from previous page)
T_A = -kt*q1*N.z + kt*q2*A.x
T_B = -kt*q2*A.x

The inertia dyadics of each body will be needed.

I = m*l**2/12
I_A_Ao = I*me.outer(A.y, A.y) + I*me.outer(A.z, A.z)
I_B_Bo = I*me.outer(B.x, B.x) + I*me.outer(B.z, B.z)

24.2 Create the TMT Components

The vector v̄ is formed from the velocities and angular velocities of each rigid body or particle.

v = sm.Matrix([
Ao.vel(N).dot(N.x),
Ao.vel(N).dot(N.y),
Ao.vel(N).dot(N.z),
A.ang_vel_in(N).dot(N.x),
A.ang_vel_in(N).dot(N.y),
A.ang_vel_in(N).dot(N.z),
Bo.vel(N).dot(N.x),
Bo.vel(N).dot(N.y),
Bo.vel(N).dot(N.z),
B.ang_vel_in(N).dot(N.x),
B.ang_vel_in(N).dot(N.y),
B.ang_vel_in(N).dot(N.z),
Q.vel(N).dot(N.x),
Q.vel(N).dot(N.y),
Q.vel(N).dot(N.z),

])
v

− lu1 sin (q1)
2

lu1 cos (q1)
2
0
0
0
u1

−lu1 sin (q1)
lu1 cos (q1)

0
u2 cos (q1)
u2 sin (q1)

u1
−lu1 sin (q1)− q3u1 cos (q1) cos (q2) + q3u2 sin (q1) sin (q2)− u3 sin (q1) cos (q2)
lu1 cos (q1)− q3u1 sin (q1) cos (q2)− q3u2 sin (q2) cos (q1) + u3 cos (q1) cos (q2)

q3u2 cos (q2) + u3 sin (q2)

(24.14)

The inertial matrices for each body and the particle Q are:

342 Chapter 24. Unconstrained Equations of Motion with the TMT Method

Learn Multibody Dynamics

MA = sm.diag(m, m, m).col_join(sm.zeros(3)).row_join(sm.zeros(3).col_join(I_A_Ao.to_
↪→matrix(N)))
MA

m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0

0 0 0 l2m sin2 (q1)
12 − l2m sin (q1) cos (q1)

12 0

0 0 0 − l2m sin (q1) cos (q1)
12

l2m cos2 (q1)
12 0

0 0 0 0 0 l2m
12

(24.15)

MB = sm.diag(m, m, m).col_join(sm.zeros(3)).row_join(sm.zeros(3).col_join(I_B_Bo.to_
↪→matrix(N)))
sm.trigsimp(MB)

m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0

0 0 0
l2m(sin2 (q1) sin2 (q2)−sin2 (q1)+1)

12
l2m sin (q1) cos (q1) cos2 (q2)

12
l2m(cos (q1−2q2)−cos (q1+2q2))

48

0 0 0 l2m sin (q1) cos (q1) cos2 (q2)
12

l2m(− cos2 (q1) cos2 (q2)+1)
12 − l2m(− sin (q1−2q2)+sin (q1+2q2))

48

0 0 0 l2m(cos (q1−2q2)−cos (q1+2q2))
48 − l2m(− sin (q1−2q2)+sin (q1+2q2))

48
l2m cos2 (q2)

12

(24.16)

MQ = sm.diag(m/4, m/4, m/4)
MQ

m4 0 0
0 m

4 0
0 0 m

4

 (24.17)

Note that these matrices change with time because we’ve expressed the inertia scalars in the inertial reference frameN .
The matrices for all of the bodies can be assembled intoM:

M = sm.diag(MA, MB, MQ)

F̄ is constructed to match the order of v̄:

F = sm.Matrix([
R_Ao.dot(N.x),
R_Ao.dot(N.y),
R_Ao.dot(N.z),
T_A.dot(N.x),
T_A.dot(N.y),
T_A.dot(N.z),
R_Bo.dot(N.x),
R_Bo.dot(N.y),
R_Bo.dot(N.z),

(continues on next page)

24.2. Create the TMT Components 343

Learn Multibody Dynamics

(continued from previous page)
T_B.dot(N.x),
T_B.dot(N.y),
T_B.dot(N.z),
R_Q.dot(N.x),
R_Q.dot(N.y),
R_Q.dot(N.z),

])
F

gm
0
0

ktq2 cos (q1)
ktq2 sin (q1)

−ktq1
gm− klq3 sin (q1) cos (q2)
klq3 cos (q1) cos (q2)

klq3 sin (q2)
−ktq2 cos (q1)
−ktq2 sin (q1)

0
gm
4 + klq3 sin (q1) cos (q2)
−klq3 cos (q1) cos (q2)

−klq3 sin (q2)

(24.18)

These are the components we need to form the reduced dynamical differential equations.

24.3 Formulate the reduced equations of motion

First find T using the Jacobian:

T = v.jacobian(u)
T

− l sin (q1)
2 0 0

l cos (q1)
2 0 0
0 0 0
0 0 0
0 0 0
1 0 0

−l sin (q1) 0 0
l cos (q1) 0 0

0 0 0
0 cos (q1) 0
0 sin (q1) 0
1 0 0

−l sin (q1)− q3 cos (q1) cos (q2) q3 sin (q1) sin (q2) − sin (q1) cos (q2)
l cos (q1)− q3 sin (q1) cos (q2) −q3 sin (q2) cos (q1) cos (q1) cos (q2)

0 q3 cos (q2) sin (q2)

(24.19)

344 Chapter 24. Unconstrained Equations of Motion with the TMT Method

Learn Multibody Dynamics

and then compute ḡ:

qd_repl = dict(zip(q.diff(t), u))
ud_repl = {udi: 0 for udi in u.diff(t)}
gbar = (M*v).diff(t).xreplace(qd_repl).xreplace(ud_repl)
sm.trigsimp(gbar)

− lmu2
1 cos (q1)
2

− lmu2
1 sin (q1)
2
0
0
0
0

−lmu21 cos (q1)
−lmu21 sin (q1)

0
l2m(u1 cos (q1) cos (q2)−2u2 sin (q1) sin (q2))u1 sin (q2)

12
l2m(u1 sin (q1) cos (q2)+2u2 sin (q2) cos (q1))u1 sin (q2)

12

− l2mu1u2 sin (2q2)
12

m(−lu2
1 cos (q1)+q3u2

1 sin (q1) cos (q2)+2q3u1u2 sin (q2) cos (q1)+q3u2
2 sin (q1) cos (q2)−2u1u3 cos (q1) cos (q2)+2u2u3 sin (q1) sin (q2))

4
m(−lu2

1 sin (q1)−q3u2
1 cos (q1) cos (q2)+2q3u1u2 sin (q1) sin (q2)−q3u2

2 cos (q1) cos (q2)−2u1u3 sin (q1) cos (q2)−2u2u3 sin (q2) cos (q1))
4

m(−q3u2 sin (q2)+2u3 cos (q2))u2

4

(24.20)

The reduced mass matrix is then formed with −TTMT:

Md = sm.trigsimp(-T.transpose()*M*T)
Md

−
m(l2 cos2 (q2)+19l2+3q23 cos2 (q2))

12
lmq3 sin (q2)

4 − lm cos (q2)
4

lmq3 sin (q2)
4 −m(l2+3q23)

12 0

− lm cos (q2)
4 0 −m

4

 (24.21)

and the reduced remainder term is formed with TT (F̄ − ḡ):

gd = sm.trigsimp(T.transpose()*(F - gbar))
gd

−
7glm sin (q1)

4 − gmq3 cos (q1−q2)
8 − gmq3 cos (q1+q2)

8 − ktq1 +
l2mu1u2 sin (2q2)

12 +
lmq3u

2
2 cos (q2)
4 + lmu2u3 sin (q2)

2 +
mq23u1u2 sin (2q2)

4 − mq3u1u3 cos (2q2)
4 − mq3u1u3

4
gmq3 cos (q1−q2)

8 − gmq3 cos (q1+q2)
8 − ktq2 − l2mu2

1 sin (2q2)
24 − mq23u

2
1 sin (2q2)
8 − mq3u2u3

2

− gm sin (q1) cos (q2)
4 − klq3 +

mq3u
2
1 cos2 (q2)
4 +

mq3u
2
2

4

(24.22)

24.3. Formulate the reduced equations of motion 345

Learn Multibody Dynamics

24.4 Evaluate the equations of motion

Now we can check to see if these dynamical differential equations are the same as the ones we found with Kane’s Method
by evaluating them with the same set of numbers we used in Numerical Evaluation. The input values were:

u_vals = np.array([
0.1, # u1, rad/s
2.2, # u2, rad/s
0.3, # u3, m/s

])

q_vals = np.array([
np.deg2rad(25.0), # q1, rad
np.deg2rad(5.0), # q2, rad
0.1, # q3, m

])

p_vals = np.array([
9.81, # g, m/s**2
2.0, # kl, N/m
0.01, # kt, Nm/rad
0.6, # l, m
1.0, # m, kg

])

We can lambdify Md and gq to see if these give the same values as those found with Kane’s Equations:

eval_d = sm.lambdify((u, q, p), (Md, gd))

Md_vals, gd_vals = eval_d(u_vals, q_vals, p_vals)
Md_vals, gd_vals

(array([[-0.60225313, 0.00130734, -0.1494292],
[0.00130734, -0.0325 , 0.],
[-0.1494292 , 0. , -0.25]]),

array([[-4.48963535],
[-0.02486744],
[-1.1112791]]))

These numerical arrays are identical to our prior results. The state derivatives then should also be identical:

eval_d(u_vals, q_vals, p_vals)
ud_vals = -np.linalg.solve(Md_vals, np.squeeze(gd_vals))
ud_vals

array([-7.46056427, -1.06525862, 0.01418834])

which they are. We can be fairly confident that Kane’s method and the TMT method result in the same equations of
motion for this system.

346 Chapter 24. Unconstrained Equations of Motion with the TMT Method

CHAPTER

TWENTYFIVE

NOTATION

This explains the notation in the book. The mathematical symbol is shown and then an example of a variable name that
we use in the code.

25.1 General

x, x,
Scalars are normal mathematical font.

R, R
Matrices are capitalized letters in bold font.

Jv̄,ū
The Jacobian of the vector function v̄ with respect to the entries in vector ū where the (i, j) entries of the Jacobian
are Jij = ∂vi

∂uj
.

25.2 Orientation of Reference Frames

A, A,
Reference frame A.

âx, ây, âz , A.x, A.y, A.z,
Right handed mutually perpendicular unit vectors fixed in reference frame A.

ACB , A_C_B,
Direction cosine matrix relating reference frames (or rigid bodies) B and A where this relation between the right
handed mutually perpendicular unit vectors fixed in the two reference frames follow this relationship:âxây

âz

 = ACB
b̂xb̂y
b̂z

 (25.1)

347

Learn Multibody Dynamics

25.3 Vectors and Vector Differentiation

v̄, v,
Vectors are indicated with a bar.

û, uhat = u.normalize(),
Unit vectors are indicated with a hat.

|v̄|, v.magnitude(),
Magnitude of a vector; Euclidean norm (2-norm).

ū · v̄, u.dot(v),
Dot product of two vectors.

ū× v̄, u.cross(v),
Cross product of two vectors.

ū⊗ v̄, u.outer(v),
Outer product of two vectors.

A∂v̄
∂q , dvdqA = v.diff(q, A),

Partial derivative of v̄ with respect to q when observed from A.

Adv̄
dt , dvdtA = v.dt(A),

Time derivative of v̄ when observed from A.

25.4 Angular and Translational Kinematics

Aω̄B , A_w_B
Angular velocity vector of reference frame or rigid body B when observed from reference frame or rigid body A.

AᾱB , A_alp_B
Angular acceleration vector of reference frame or rigid body B when observed from reference frame or rigid body
A.

r̄P/O, r_O_P,
Vector from point O to point P .

Av̄P , A_v_P
Translational velocity of point P when observed from reference frame or rigid body A.

AāP , A_a_P
Translational acceleration of point P when observed from reference frame or rigid body A.

348 Chapter 25. Notation

Learn Multibody Dynamics

25.5 Constraints

N,M,n,m, p
N coordinates, M holonomic constraints, n generalized coordinates and generalized speeds, m nonholonomic
constraints, and p degrees of freedom. These are related by the two equations n = N −M and p = n−m.

f̄h(q1, . . . , qN , t) = 0 where f̄h ∈ RM , fh
Vector function ofM holonomic constraint equations among the N coordinates.

f̄n(u1, . . . , un, q1, . . . , qn, t) = 0 where f̄n ∈ Rm, fn
Vector function ofm nonholonomic constraint equations among the n generalized speeds and generalized coordi-
nates.

Ar
Linear coefficient matrix for ūr in the nonholonomic constraint equations.

As
Linear coefficient matrix for ūs in the nonholonomic constraint equations.

b̄rs
Terms not linear in ūs or ūr in the nonholonomic constraint equations.

An
Linear coefficient matrix for ūs in the equation for ūr = Anūs + b̄n.

b̄n
Terms not linear in ūs in the equation for ūr = Anūs + b̄n.

25.6 Mass Distribution

Ī
B/O
a , I_B_O_a

Inertia vector of rigid body B or set of particles B with respect to point O about the unit vector n̂a.
Q̆, Q

Dyadics are indicated with a breve accent.
ĬB/O, I_B_O

Inertia dyadic of body B or set of particles B with respect to point O.
ĬB/Bo , I_B_Bo

Central inertia dyadic of body B or set of particles B with respect to mass center Bo.
AH̄B/O, A_H_B_O

Angular momentum of rigid body B with respect to point O in reference frame A.

25.7 Force, Moment, and Torque

R̄S , R_S
Resultant of the vector set S.

R̄S/Q, R_S_Q
Resultant of the vector set S bound to a line of action through point Q.

M̄S/P , M_S_P
Moment of the resultant of the vector set S about point P .

25.5. Constraints 349

Learn Multibody Dynamics

T̄B , T_B
Torque of couple acting on reference frame or body B.

25.8 Generalized Forces

Av̄Pr , v_P_r
rth holonomic partial velocity of point P in reference frame A associated with the generalized speed ur.

Aω̄Br , w_B_r
rth holonomic partial angular velocity of reference frame B in reference frame A associated with the generalized
speed ur.

AṽPr , v_P_r
rth nonholonomic partial velocity of point P in reference frame A associated with the generalized speed ur.

Aω̃Br , w_B_r
rth nonholonomic partial angular velocity of reference frameB in reference frameA associated with the generalized
speed ur.

Fr, F1
rth holonomic generalized active force associated with the generalized speed ur.

F̃r, F1
rth nonholonomic generalized active force associated with the generalized speed ur.

F̄r, Fr
Column vector of all generalized active forces (holonomic or nonholonomic).

F ∗
r , F1s

rth holonomic generalized inertia force associated with the generalized speed ur.
F̃ ∗
r , F1s

rth nonholonomic generalized inertia force associated with the generalized speed ur.
F̄ ∗
r , Frs

Column vector of all generalized active forces (holonomic or nonholonomic).

25.9 Unconstrained Equations of Motion

f̄k(˙̄q, ū, q̄, t) = 0
Kinematical differential equations.

Mk

Linear coefficient matrix for ˙̄q in the kinematical differential equations.
ḡk

Terms not linear in ˙̄q in the kinematical differential equations.
f̄d(˙̄u, ū, q̄, t) = 0

Dynamical differential equations.
Md

Linear coefficient matrix for ˙̄u in the dynamical differential equations, often called the “mass matrix”.
ḡd

Terms not linear in ˙̄u in the dynamical differential equations.

350 Chapter 25. Notation

Learn Multibody Dynamics

x̄ = [q̄ ū]T

State of a multibody system.
Mm

Linear coefficient matrix for ˙̄x in the equations of motion.
ḡm

Terms not linear in ˙̄x in the equations of motion.

25.10 Equations of Motion with Nonholonomic Constraints

f̄n(ūs, ūr, q̄, t) = 0
Nonholonomic constraint equations.

Mn = Ar
Linear coefficient matrix for ūr in the nonholonomic constraint equations.

ḡn = Asūs + b̄rs
Terms not linear in ūr in the nonholonomic constraint equations.

˙̄fn(˙̄us, ˙̄ur, ūs, ūr, q̄, t) = 0
Time derivative of the nonholonomic constraint equations.

Mnd

Linear coefficient matrix for ˙̄ur in the time differentiated nonholonomic constraint equations.
ḡnd

Terms not linear in ˙̄ur in the time differentiated nonholonomic constraint equations.

25.11 Equations of Motion with Holonomic Constraints

˙̄fh(ū, ūr, q̄, q̄r, t) = 0
Time derivative of the holonomic constraints.

Mhd

Linear coefficient matrix for ūr in the time differentiated holonomic constraints.
ḡhd

Terms not inear in ūr in the time differentiated holonomic constraints.

25.12 Energy and Power

P , P
Power

W , W
Work

K,KQ,KB , K,KQ,KB
Kinetic energy, kinetic energy of particle Q, kinetic energy of body B

V , V
Potential energy

25.10. Equations of Motion with Nonholonomic Constraints 351

Learn Multibody Dynamics

E, E
Total energy, i.e. E = K + V

25.13 Lagrange’s method

L, L
Lagrangian the difference between the kinetic energy and the potential energy: L = K − V

ar
Multiplicative term associated with generalized speed qr in a constraint equation

λ
Lagrange multiplier, variable encoding the (scaled) magnitude of a constraint force

f̄hn
Combined time-derivatives of holonomic constraints and non-holonomic constraints

Mhn, M_hn
Jacobian of constraint equations with respect to ˙̄q

p̄, p
Generalized momenta ssociated with the q̄ generalized coordinates

ḡd
Dynamic bias, the sum of terms not linear in $ddot{bar{q}}$ in the inertial forces and the generalized conservative
forces considered in the Lagrangian.

25.14 Figure Sign Conventions

25.14.1 Vectors

In figure Fig. 25.1 various vectors are shown. Vectors are always drawn with a single arrow to indicate the positive sense
of the vector. In a) the vector acting on body A is −Fn̂x and the vector acting on body B is Fn̂x. The variable F
indicated beside the arrow means that a positive value of F has the corresponding sense as the vector arrow head. The
sense changes for both vectors in b) and for one vector in c). In d), a negative F is indicated. This makes d) equivalent
to a). The negative sense for that vector is shown when −F is beside it.

25.14.2 Dimensions

When we draw dimensions (linear or angular) the arrow heads (or absence of arrow heads) do not indicate anything about
the “sense” of the dimension. A dimension can take on positive and negative values and you have to rely on the sense of
reference frame unit vectors to know what configuration occurs if a positive or negative value is given for a dimension.
Fig. 25.2 shows three ways to indicate leader arrows on the dimension for the distance between points P and Q parallel
to n̂x. A positive value of q indicates that pointQ is to the right of point P and that r̄Q/P · n̂x = q and r̄P/Q · n̂x = −q.
In the first row (a, b, c) of Fig. 25.3 there are three ways to indicate leader arrows on the angular dimension q for a positive
right handed orientation of A with respect to N . A positive value of q gives a positive right handed orientation in a), b),
and c). This corresponds to the SymPy Mechanics command A.orient_axis(N, q, N.z). In the second row (d,
e, f), three ways are shown to indicate leader arrows on the angular dimension q for a negative right handed orientation
of A with respect to N . A positive value of q causes a negative right handed orientation. This row corresponds to the
SymPy Mechanics commands A.orient_axis(N, -q, N.z) or A.orient_axis(N, q, -N.z). In g) a

352 Chapter 25. Notation

Learn Multibody Dynamics

Fig. 25.1: Various ways to draw vector arrows, where the arrow head indicates the positive sense of the vector if the
variable has no sign and negative sense if the variable has a negative sign.

Fig. 25.2: Three options for adding arrows to linear dimensions which all have the same meaning. Follow the right hand
rule to know the positive sense of an orientation.

25.14. Figure Sign Conventions 353

Learn Multibody Dynamics

negative sign is indicated on q. It is sometimes convenient to draw the rotation in negative right handed rotation and by
labeling the value −q. This means that g) is equivalent to a). We try to do this sparingly.

Fig. 25.3: Options for adding arrows to angular dimensions for positive (first row) and negative (second row) orientations.

354 Chapter 25. Notation

CHAPTER

TWENTYSIX

REFERENCES

355

Learn Multibody Dynamics

356 Chapter 26. References

CHAPTER

TWENTYSEVEN

PRIOR VERSIONS

• Version 0.2: Final version after the 2023 course.
• Version 0.1: Final version after the 2022 course.

357

https://github.com/moorepants/learn-multibody-dynamics/releases/tag/v0.2
https://github.com/moorepants/learn-multibody-dynamics/releases/tag/v0.1

Learn Multibody Dynamics

358 Chapter 27. Prior Versions

CHAPTER

TWENTYEIGHT

LECTURE VIDEOS

2023 Lecture Video Playlist
2022 Lecture Video Playlist

359

Learn Multibody Dynamics

360 Chapter 28. Lecture Videos

BIBLIOGRAPHY

[Flores2023] Paulo Flores, Jorge Ambrósio, Hamid M. Lankarani, “Contact-impact events with friction in mulitbody
dynamics: Back to basics”, Mechanism and Machine Theory, vol. 184, 2023. https://doi.org/10.1016/j.
mechmachtheory.2023.105305

[Hunt1975] K. H. Hunt, F. R. E. Crossley, “Coefficient of restitution interpreted as damping in vibroimpact”, J. Appl.
Mech., 42 (2) (1975), pp. 440-445.

[Kane1985] Thomas R. Kane, and David A. Levinson. Dynamics, Theory and Application. McGraw Hill, 1985. http:
//hdl.handle.net/1813/638.

[Meijaard2007] J. P. Meijaard, J. M. Papadopoulos, A. Ruina, and A. L. Schwab, “Linearized dynamics equations for the
balance and steer of a bicycle: A benchmark and review,” Proceedings of the Royal Society A:Mathematical,
Physical and Engineering Sciences, vol. 463, no. 2084, pp. 1955–1982, Aug. 2007.

[Mitiguy1996] P. Mitiguy, “Motion variables Leading to Efficient Equations of Motion,” The International Journal of
Robotics Research, vol. 15, no. 5, pp. 522–532, 1996.

[Ostrowski1994] Jim Ostrowski, Andrew Lewis, Richard Murray, Joel Burdick Nonholonomic Mechanics and Locomo-
tion: The Snakeboard Example. 1994

[Vallery2020] Heike Vallery and Arend L. Schwab, “Advanced Dynamics”, 3rd edition, Delft University of Technology,
2020, ISBN/EAN 978-90-8309-060-3

[Lanczos1970] Cornelius Lanczos, “The Variational Principles of Mechanics”, 4th edition, Dover Publications, 1970,
ISBN/EAN 978-04-8665-067-8

361

https://doi.org/10.1016/j.mechmachtheory.2023.105305
https://doi.org/10.1016/j.mechmachtheory.2023.105305
http://hdl.handle.net/1813/638
http://hdl.handle.net/1813/638

	Introduction
	What You Will Learn
	Prerequisites
	Purpose
	Choice of dynamics formalism
	Choice of programming language
	History
	Acknowledgements
	Tools Behind the Book

	License
	Install the Software
	1) Miniconda
	2) Create and Activate an Environment
	3) Install Packages
	4) Open Jupyter Notebook
	Software Versions

	Jupyter and Python
	Learning Objectives
	Introduction
	The Jupyter Notebook
	Using the Notebook
	Magic Commands
	Need Help?

	Python
	Basic Data Types
	Data Structures
	Lists
	Tuples
	Dictionaries

	Functions
	Modules

	Learn More
	More Jupyter
	More Python

	SymPy
	Learning Objectives
	Introduction
	Import and Setup
	Symbols
	Undefined Functions
	Symbolic Expressions
	Printing
	Differentiating
	Evaluating Symbolic Expressions
	Matrices
	Solving Linear Systems
	Simplification
	Learn more

	Orientation of Reference Frames
	Learning Objectives
	Reference Frames
	Unit Vectors
	Simple Orientations
	Direction Cosine Matrices
	Successive Orientations
	SymPy Mechanics
	Euler Angles
	Alternatives for Representing Orientation
	Learn more

	Vectors
	Learning Objectives
	What is a vector?
	Vector Functions
	Addition
	Scaling
	Dot Product
	Cross Product
	Vectors Expressed in Multiple Reference Frames
	Relative Position Among Points

	Vector Differentiation
	Learning Objectives
	Partial Derivatives
	Product Rule
	Second Derivatives
	Vector Functions of Time

	Angular Kinematics
	Learning Objectives
	Introduction
	Angular Velocity
	Angular Velocity of Simple Orientations
	Body Fixed Orientations
	Time Derivatives of Vectors
	Addition of Angular Velocity
	Angular Acceleration
	Addition of Angular Acceleration

	Translational Kinematics
	Learning Objectives
	Introduction
	Translational Velocity
	Velocity Two Point Theorem
	Velocity One Point Theorem
	Translational Acceleration
	Acceleration Two Point Theorem
	Acceleration One Point Theorem

	Holonomic Constraints
	Learning Objectives
	Four-Bar Linkage
	Solving Holonomic Constraints
	General Holonomic Constraints
	Generalized Coordinates
	Calculating Additional Kinematic Quantities

	Nonholonomic Constraints
	Learning Objectives
	Motion Constraints
	Chaplygin Sleigh
	Rolling Without Slip
	Kinematical Differential Equations
	Choosing Generalized Speeds
	Choice 1
	Choice 2
	Choice 3

	Snakeboard
	Degrees of Freedom

	Mass Distribution
	Learning Objectives
	Particles and Rigid Bodies
	Mass
	Mass Center
	Distribution of Mass
	Inertia Matrix
	Dyadics
	Properties of Dyadics
	Inertia Dyadic
	Parallel Axis Theorem
	Principal Axes and Moments of Inertia
	Angular Momentum

	Force, Moment, and Torque
	Learning Objectives
	Force
	Bound and Free Vectors
	Moment
	Couple
	Equivalence & Replacement
	Specifying Forces and Torques
	Equal & Opposite
	Contributing and Noncontributing Forces
	Gravity
	Springs & Dampers
	Friction
	Aerodynamic Drag
	Collision

	Generalized Forces
	Learning Objectives
	Introduction
	Partial Velocities
	Nonholonomic Partial Velocities
	Generalized Active Forces
	Generalized Active Forces on a Rigid Body
	Nonholonomic Generalized Active Forces
	Generalized Inertia Forces
	Nonholonomic Generalized Inertia Forces

	Unconstrained Equations of Motion
	Learning Objectives
	Dynamical Differential Equations
	Body Fixed Newton-Euler Equations
	Equations of Motion
	Example of Kane’s Equations
	Implicit and Explicit Form

	Simulation and Visualization
	Learning Objectives
	Numerical Integration
	Numerical Evaluation
	Simulation
	Plotting Simulation Trajectories
	Integration with SciPy
	Animation with Matplotlib

	Three Dimensional Visualization
	pythreejs
	Creating a Scene
	Transformation Matrices
	Geometry and Mesh Definitions
	Scene Setup
	Animation Setup
	Animated Interactive 3D Visualization

	Equations of Motion with Nonholonomic Constraints
	Learning Objectives
	Introduction
	Snakeboard Equations of Motion
	1. Declare all the variables
	2. Establish the kinematics
	3. Specify the kinematical differential equations
	4. Establish the nonholonomic constraints
	5. Rewrite velocities in terms of independent speeds
	6. Compute the partial velocities
	7. Rewrite the accelerations in terms of the independent generalized speeds
	8. Create the generalized forces
	9. Formulate the dynamical differential equations

	Simulate the Snakeboard
	Animate the Snakeboard
	Calculating Dependent Speeds

	Equations of Motion with Holonomic Constraints
	Learning Objectives
	Introduction
	Four-bar Linkage Equations of Motion
	1. Declare all of the variables
	2. Setup the open loop kinematics and holonomic constraints
	3. Create the holonomic constraints
	4. Specify the kinematical differential equations
	5. Solve for the dependent speeds
	6. Write velocities in terms of the generalized speeds
	7. Form the generalized active forces
	8. Form the generalized inertia forces
	9. Equations of motion

	Simulate without constraint enforcement
	Animate the Motion
	Correct Dependent Coordinates
	Simulate Using a DAE Solver

	Exposing Noncontributing Forces
	Learning Objectives
	Introduction
	Double Pendulum Example
	Apply Newton’s Second Law Directly
	Auxiliary Generalized Speeds
	Auxiliary Generalized Active Forces
	Auxiliary Generalized Inertia Forces
	Augmented Dynamical Differential Equations
	Compare Newton and Kane Results

	Energy and Power
	Learning Objectives
	Introduction
	Kinetic Energy
	Potential Energy
	Total Energy
	Energetics of Jumping
	Equations of Motion
	Energy

	Simulation Setup
	Conservative Simulation
	Conservative Simulation with Ground Spring
	Nonconservative Simulation
	Simulation with Passive Knee Torques
	Simulation with Active Knee Torques

	Equations of Motion with the Lagrange Method
	Learning Objectives
	Introduction
	Inertial forces from kinetic energy
	Example: freely moving 3D body

	Conservative Forces
	The Lagrange Method
	Example: Double pendulum with springs and sliding pointmass

	Constrained equations of motion
	Example: turning the freely floating body discussed earlier into a rolling sphere.

	Lagrange’s vs Kane’s

	Unconstrained Equations of Motion with the TMT Method
	Example Formulation
	Create the TMT Components
	Formulate the reduced equations of motion
	Evaluate the equations of motion

	Notation
	General
	Orientation of Reference Frames
	Vectors and Vector Differentiation
	Angular and Translational Kinematics
	Constraints
	Mass Distribution
	Force, Moment, and Torque
	Generalized Forces
	Unconstrained Equations of Motion
	Equations of Motion with Nonholonomic Constraints
	Equations of Motion with Holonomic Constraints
	Energy and Power
	Lagrange’s method
	Figure Sign Conventions
	Vectors
	Dimensions

	References
	Prior Versions
	Lecture Videos
	Bibliography

