$$
\bar{u}=V_{\dot{q}}+\bar{z} \quad \bar{u}_{r}=\sum_{s=1}^{n} \gamma_{r s} \dot{q}_{s}+z_{r}
$$

Kinemation differential equatios (modeler chooses)

Partial Velocrties

$$
\begin{aligned}
& \bar{V}= \sum_{r=1}^{n} \bar{V}_{V_{r}}^{V_{r} u_{r}+\bar{V}_{t}} \\
& \quad \text { for } n \text { G.S. } \begin{array}{c}
\text { pastal } \\
\text { valumic } \\
\text { velocity }
\end{array}
\end{aligned}
$$

If mothon $p=n-m$
\rightarrow indround C.S.

Nonholonpinic

$$
\bar{V}=\sum_{r=1}^{P} \widetilde{V}_{r} u_{r}+\widetilde{V}_{t}
$$

$r^{\text {th }}$ nohholomic partal velocity

$$
\bar{\omega}=\sum_{r=1}^{p} \tilde{\omega}_{r} u_{r}+\tilde{\omega}_{t} \quad r^{2 n} \text { nonhobomic angular vel }
$$

Figure 2.13.1

$$
\begin{aligned}
& \text { Purtiai Vels }
\end{aligned}
$$

$$
\begin{aligned}
& A \widetilde{V}_{1}^{D^{*}}=\hat{e}_{x} \quad \widetilde{V}_{2}^{D^{*}}=0 \\
& A \bar{\omega}_{1}^{E}=0 \quad \Delta \bar{\omega}_{2}^{E}=0 \\
& A \widetilde{V}_{t}^{D^{*}}=-\omega\left(q_{1}+L c_{3} \hat{e}_{2}\right) \\
& A \bar{\omega}_{3}^{\underline{I}}=\hat{e}_{2} \quad A \bar{\omega}_{t}^{\Delta^{*}}=\omega{s_{3}}_{e_{x}}+\omega c_{3} \hat{e}_{y} \\
& { }^{E} \tilde{\omega}_{1}^{A}=0 \\
& E \bar{\omega}_{2}^{A}=-\frac{\hat{e}_{2}}{L} \\
& E \bar{\omega}_{t}^{\lambda}=\omega s_{3} \hat{e}_{x}+\omega C_{3} \hat{e}_{y}
\end{aligned}
$$

MAE223-L10-03

$$
\bar{a}=\frac{N}{d t} \quad \bar{F}_{m}=\bar{a}
$$

$\frac{\bar{F}}{m} \cdot \bar{V}_{1} \Rightarrow$ the component of fore that $\ln _{b}$ causes motion in the $U, G . S$.
if apotial verity is \perp to \bar{F}, then \bar{F} doegsit cause any motion in the $r^{\text {th }}$ direction So if $V_{r} \perp \bar{F}$

Mass Distribution particles oRBs

Masscentor of a rigid body (where the mass is on average)
Given a set of partides of mass m_{1}, \ldots, m_{ν} located at positions $\bar{r}_{1}, \ldots, \bar{F}_{\nu}$, there is a point S^{*} so that $\sum m_{i} \bar{r}_{i}=0$ wham \bar{r}_{i} is the vector form s^{*} to partite i. S^{*} is the mass center.
The "first moment of mass". is zee relative to the mass center. Or if we choose arbitras point 0 , from which \bar{r}_{i} are measured then position vector to S^{*} from $0: \bar{P}^{*}$ is given by

$$
\bar{P}^{*}=\frac{\sum_{i=1}^{\nu} m_{i} \bar{r}_{i}}{\sum_{i=1}^{\nu} m_{i}}=\frac{\text { first monet }}{\|_{m}}
$$

MAE223-L10-05
Monday, October 30, 2017 11:18 AM
Ex 3 particles

Can we vary m_{3} some amour t to move the mass center to get mass center as close as ,ossitte to lin $\overline{O B}$?

Let $\vec{p}^{*}=$ position vector from O to s^{*}
say $m_{1}=m, m_{2}=2 m, m_{3}=\mu$

$$
\bar{P}^{*}=\frac{\sum_{i=1}^{3} \bar{p}_{i} m_{i}}{\sum_{i=1}^{3} m_{i}}=\frac{m\left(\hat{a}_{2}+\hat{a}_{3}\right)+2 m\left(\hat{a}_{1}+\hat{a}_{3}\right)+\mu\left(\hat{a}_{1}+a_{2}\right)}{m+2 m+\mu}
$$

Distima from P^{*} to $\overline{O B ? ~}$

$$
\begin{aligned}
& \hat{n} \times p^{*}=\left|p^{*}\right| \sin \theta \\
& \frac{D}{1-n}=\sin \theta
\end{aligned}
$$

$$
\frac{d D^{2}}{d \mu}=0
$$

$$
\begin{aligned}
& \text { Now assur } \hat{n}=\frac{\left(\hat{a}_{1}+\hat{a}_{2}+\hat{a}_{3}\right)}{\sqrt{3}} \\
& \begin{array}{l}
\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\left(\mu^{2}-3 \mu m+3 m^{2}\right)}{3(m+\mu)^{2}}=\mid \vec{P}^{*}=\left(\bar{p}^{*} \cdot \hat{n}\right) \hat{n}=1 n \times p \\
D^{2}=\frac{d D}{d \mu}=-\frac{m \sqrt{6}(9 m-5 \mu)}{18\left(m^{2}+2 m \mu+\mu^{2}\right) \sqrt{3 m^{2}-3 m \mu+\mu^{2}}} \\
\frac{d D}{d \mu}=0 \Rightarrow \sqrt{\mu=\frac{5 m}{3}}
\end{array} \\
& =\left|\vec{p}^{*}=\left(\bar{p}^{*} \cdot \hat{n}\right) \hat{n}\right|=\left|\hat{n} x \bar{p}^{-*}\right|
\end{aligned}
$$

$$
3(m+\mu)^{2} \quad \text { au } \quad \frac{\ddot{c}}{d \mu}=0 \Rightarrow \mu \mu=\frac{5 m}{3}
$$

MAE223-L10-06
Monday, October 30, 2017
11:46 AM

