- For a geneal dyadic pure and post muttipliccing by an arbitrary vector \bar{v} give different results. Howe ever an inertia dyadic is symmetric and produces the same result in pere and post multiplication.
- There is only one inertia dyadic even though there ave an intuich number of inertia matrices. The inertia matrix depends on the choice of RF.
- When O is the center of mass of S then call "central inertia dyalli" $\bar{I}^{s / 0}$
There relationship between dyadics fur different points. E.G. if point Q (arbidany)

$$
\begin{aligned}
& I_{T}^{S / Q}=\bar{I}_{Q}^{S / S_{0}}+\overline{I^{\prime}} S_{0} Q_{\text {insertion of "parties at muss canter }}^{\text {of mass }} m_{\text {ToT" }} \\
& \text { ariblory } \underset{\substack{\text { mass } \\
\text { center }}}{\text { pint collection of }} \text { of } \\
& \text { pict center of } S \\
& \text { particks or RBS. }
\end{aligned}
$$

Geneal form of the parallel axis theorem.

