Forces and Torque (Loads)
Vectors so far doit hae a lime of action. If a vector is associates With aloe they are called bound vectors. If not associated w/ime: free vectors.

Ex
Bound

$\bar{M} \triangleq \bar{P} \times \bar{V}$ where \bar{P} is a position vector fum P to any-other point on a line of action, L, of \bar{V}.

$$
\bar{\sim}=\frac{p_{1}}{\sim}
$$

Suppose we have a set S of vectors
$\bar{v}_{i} i=1, \ldots, n$ we define the resistant
of set S^{\prime} as $\bar{R} \triangleq \sum_{i=1}^{n} \bar{V}_{i}$. (bound or free)
If each of \bar{V}_{i} are bound, sum of the moments a bout P is called moment of S^{\prime} abuint P.
Couple \triangleq setrin of bound vectors with zero resultant Equivalence Replacement
If is not a vector but a set of vectors.
Car ham as many vectors as you want. $\bar{R}_{S}=0$ minimum \# of vectors in couple must be 2 Couple of 2 vectors: simple caph ex ${ }^{\prime}$

Torque of a conch is the moment of a caph about a point. Torque of couph is the same absent all points.

Two sets of bour vectors are. equirikest when they hae two papains:

1) equal resultants
2) equal moments about any point Ether set is said to be a roplount $=$ of the other.
couples harry equal torques are equivab. \dagger since resultants are automatically zero and moments about every point $=T=$ tor ae of couple
sequachant sets of buried vectors have

$\frac{e q u a l}{} \bar{M}^{\beta / P}=\bar{M}^{s / \alpha}+\bar{r}^{P / a} \times \bar{R}^{\beta}$

Replacement
Let S be a set of bound vectors and S^{\prime} is another set of bound vectors with couple of torque T together with single bound vector \bar{V} whose lime of action passes through point?
Then for S^{\prime} to be replacement for $1 S$, it is necessary and for is,
sufficient that

$$
\text { sufficient that } \quad \bar{M} S / P \text { and } b) \quad \bar{V}=R^{\prime}
$$

\therefore Every set S of bound vectors is equivalent to a set S^{\prime} consisting of couple together with singh bound vector equal to the resultant of S^{\prime} '.

