

Taylor Series Expunsion

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)^{\prime}
\end{aligned}
$$

Multivarate

$$
\begin{aligned}
& \text { nultivariate } \\
& \begin{aligned}
f(x, y, z)=f(a, b, c) & +(x-a) \frac{\partial f(a, b, c)}{\partial x}+(y-b) \frac{\partial f(a, b c)}{2 y} \\
& +(z-c) \frac{\partial f(x, b, c)}{\partial z}
\end{aligned}
\end{aligned}
$$

Jacobian

$$
\bar{F}_{r}+F_{r}^{*}=0=\bar{f}(\bar{q}, \bar{u}, \dot{u}, t)
$$

vector form $\circ^{\perp} T_{\text {ay }} l$ Serres

Vector form of Tayl- Serres

$$
\begin{aligned}
& \bar{f}(x, y, z)=\bar{f}(a, b, c)+J_{\bar{f}}(a, b, c)\left(\bar{v}-\bar{V}_{0}\right) \\
& \bar{V}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \bar{V}_{0}=\left[\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right] \\
& \bar{f}(\bar{v})=\bar{f}\left(\bar{v}_{0}\right)+J_{\bar{f}}\left(\bar{v}_{0}\right)\left(\bar{v}-\bar{v}_{0}\right) \\
& =\left[\begin{array}{c}
f_{1}\left(x_{0}, y_{0} z_{0}\right) \\
\vdots \\
f_{n}\left(x_{0}, y_{0}, z_{0}\right.
\end{array}\right]+\left.\left[\begin{array}{cc}
n \times 3 & \frac{2 f 1}{2 x} \frac{2 f}{2 y} \\
\vdots & \frac{2 f}{22} \\
\frac{2 f_{n}}{2 x} & \frac{\partial \xi_{n}}{2 z}
\end{array}\right]\right|_{\bar{v}_{0}=}\left[\begin{array}{l}
x-x_{0} \\
y-y_{0} \\
z-z_{0}
\end{array}\right]
\end{aligned}
$$

For the dymamizs

$$
\begin{aligned}
& {\overline{F_{r}}}_{r}+\bar{F}_{r}=0 \quad r=1, \ldots, P \\
& \bar{f}(\bar{a}, \bar{u}, \bar{u})=0 \\
& \overline{V^{\prime}}=\left[\begin{array}{c}
(+2, \times 1 \\
\bar{q} \\
\bar{u}
\end{array}\right] \quad \bar{V}_{0}=\left[\begin{array}{l}
\bar{q} \\
\bar{u}_{0} \\
\bar{u}
\end{array}\right]=\left[\begin{array}{l}
\bar{q} \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Jif hes sied $p x(n+2 p)$

