Kinematics
Particle:
Rigid Body:
all points on RB has partich Kinematics

1) angular position(orientation)
2) angular velocity
3) angular accalertion

Rigid Body Orientation (attitude)
Suppose two RF A, B with fixed coordinate systems $\hat{a}_{1}, \hat{a}_{2}, \hat{a}_{3}$

$$
\hat{b}_{1}, \hat{b}_{2}^{2}, \hat{b}_{3}
$$

How can we describe the orientation of B relation to A.

$$
\begin{gathered}
\text { use angle s batmen } \\
\hat{b}_{1}, \hat{b}_{2}, \hat{b}_{3} \text { writ } \\
\hat{a}_{1}, \hat{a}_{2}, \hat{a}_{3}
\end{gathered}
$$

$$
\hat{a}_{1}
$$

$$
\begin{aligned}
\hat{b}_{1} & =\cos \alpha_{1} \hat{a}_{1}+\cos \alpha_{2} \hat{a}_{2}+\cos \alpha_{3} \hat{a}_{3} \\
& =\left(\hat{b}_{1} \cdot \hat{a}_{1}\right) \hat{a}_{1}+\left(\hat{b} 1 \hat{a}_{2}\right) \hat{a}_{2}+\left(\hat{b}_{1} \cdot \hat{a}_{3}\right) \hat{a}_{3} \\
\hat{b}_{2} & =\cos \beta_{1} \hat{a}_{1}+\cos \beta_{2} \hat{a}_{2}+\cos \beta_{3} \hat{a}_{3} \\
\hat{b}_{3} & =\cos \gamma_{1} \hat{a}_{1}+\cos \gamma_{2} \hat{a}_{2}+\cos \gamma_{3} \hat{a}_{3}
\end{aligned}
$$

$$
\left[\begin{array}{l}
\hat{b}_{1} \\
\hat{b}_{2} \\
\hat{b}_{3}
\end{array}\right]=\left[\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right]\left[\begin{array}{l}
\hat{a}_{1} \\
\hat{a}_{2} \\
\hat{a}_{3}
\end{array}\right]
$$

$C_{i j}$ is the cosine of the angl between \hat{b}_{i} and \hat{a}_{c}
direction $\frac{\frac{\operatorname{cosin} e}{m a t r i x}}{\text { mf }}$ of B relative to

MAE223-L3-03
Ex (A) gand $\hat{\Pi}_{2}$ Merry go round

$$
\|r\|=r
$$

ω is constant, so

$$
\theta=\omega t_{r_{b}} \theta_{0}=0
$$

ω :ing vel
$\bar{r}=r \hat{b}_{1} \rightarrow r$ is fixed in \bar{B}

$$
\bar{V}=V \hat{b}_{2}
$$

$$
\bar{V}=V\left(-\sin \theta \hat{r}_{1}+\cos \theta \hat{r}_{2}\right)
$$

$$
B \frac{d \bar{r}}{d t} \neq \frac{N \bar{r}}{d t}
$$

$B \frac{d \bar{r}}{d t}=0$
N

$$
\frac{d \bar{r}}{d t}=\bar{v}=\hat{v} \hat{b}_{2}=-v \sin \theta \hat{n}_{1}+v \cos \theta \hat{r}_{2}
$$

MAE223-L3-04
angular velocity of rigid body B in RF A has to do with the rate of change of onentation of B in A.
Suppose $\hat{b}_{1}, \hat{b}_{2}, \hat{b}_{3}$ are $R H$ set of mutually perpendicular units vectors fixed in B.
$A \tilde{\omega}^{B} \triangleq$ angular velocity of B in A

$$
\begin{aligned}
\triangleq & \hat{b}_{1}\left(\frac{A}{A} \frac{d \hat{b}_{2}}{d t} \cdot \hat{b_{3}}\right)+b_{2}\left(\frac{{ }_{d} \hat{b}_{3}}{d t} \cdot \hat{b_{1}}\right)+ \\
& \hat{b}_{3}\left(\frac{A}{d} \hat{b_{1}}\right. \\
& \left.\cdot \hat{b_{2}}\right)
\end{aligned}
$$

MAE223-L3-05
$A \bar{\omega} B^{3} \triangleq$ angular velocity of B in A

$$
\begin{aligned}
& \left.\hat{b}_{1}\left(\frac{A^{2} \hat{b}_{2}}{d t} \cdot \hat{b}_{3}\right)+b_{2} \frac{A_{d}}{d t} \cdot \hat{b}_{1}\right)+ \\
& \hat{b}_{3}\left(\frac{A \hat{b}_{1}}{d t} \cdot \hat{b}_{2}\right) \\
& { }^{A} \bar{\omega}^{B} \times \hat{b}_{1}=0+\underbrace{\hat{b}_{2} \times \hat{b}_{1}}_{-\hat{b}_{3}}\left(\frac{A d \hat{b}_{3}}{d t} \cdot \hat{b}_{1}\right)+\underbrace{\hat{b}_{3} \times \hat{b}_{1}}_{\hat{b}_{2}}\left(\frac{d d \hat{b}_{1}}{d t} \cdot \hat{b}_{2}\right) \\
& \hat{b_{i}} \hat{b_{1}}=\text { ? remember that }\left\|\hat{b}_{1}\right\|=1 \\
& =0 \\
& \hat{b}_{1} \cdot \hat{b}_{3}=0 \stackrel{d / d t}{\Rightarrow} \hat{\hat{b}} \cdot \hat{b}_{3}+\hat{b_{1}} \cdot \hat{b}_{3}=0 \Rightarrow \dot{\hat{b}} \cdot \hat{b_{3}}= \\
& A \omega^{\beta} \times \hat{b}_{1}=-\hat{b}_{3}\left(\hat{b}_{3} \cdot \hat{b}_{1}\right)+\hat{b}_{2}\left(\hat{b}_{1} \cdot \hat{b}_{2}\right) \\
& -\hat{b}_{1} \cdot \dot{\hat{b}}_{3}
\end{aligned}
$$

MAE 223-L3-06

$$
\begin{aligned}
A \bar{\omega}^{B} \times \hat{b}_{1} & =\underbrace{\hat{b_{1}}\left(\hat{b}_{1} \cdot \hat{b}_{1}\right)}+\hat{b}_{2}\left(\dot{\hat{b}_{1}} \cdot \hat{b}_{2}\right)+\hat{b}_{3}\left(\dot{\hat{b}}_{1} \cdot \hat{b}_{3}\right) \\
& =\dot{\hat{b}}_{1}=\frac{A d \hat{b}_{1}}{d t} \\
A & \bar{\omega}^{B} \times \hat{b}_{1}=\frac{A d \hat{b}_{1}}{d t}
\end{aligned}
$$

also true for an a-bidravy vector $\bar{\beta}$

$$
\frac{A_{d} \bar{B}}{d t}={ }^{A} \bar{c} B \times \bar{B}
$$ in B

Ex Hare 2 RF \hat{b}_{i} fixed in B

$$
\hat{a}_{i} \text { fixed in } \Delta
$$

measure the tinore histones of the projections of each \hat{a}_{0} on each \hat{b}_{i}

$$
\alpha_{i}=\hat{b}_{1} \cdot \hat{a}_{i} \quad \beta_{i}=\hat{b}_{2} \cdot \hat{a}_{i} \quad \gamma_{i}=\hat{b}_{3} \cdot \hat{a}_{i}
$$

d so $\quad \alpha_{l}, \dot{\varepsilon}_{i}, \dot{\gamma}_{l}$

$$
\ddot{i}=1, \ldots, 3
$$

At any given point we know all 18 quantities

$$
\begin{aligned}
& \hat{b}_{1}=\alpha_{1} \hat{a}_{1}+\alpha_{2} \hat{a}_{2}+\alpha_{3} \hat{a}_{3} \frac{d \hat{b}_{1}}{d t}=\dot{\alpha}_{1} \hat{a}_{1}+\dot{\alpha}_{2} \hat{a}_{2} \\
& +\dot{\alpha}_{3} \hat{a}_{3} \\
& \hat{b}_{2}=\hat{B}_{1} \hat{a}_{1}+\cdots \\
& \hat{b}_{3}=\gamma_{1} \hat{a}_{1}+\cdots
\end{aligned}
$$

MAE223-L3-08

$$
\begin{aligned}
A \frac{\omega^{B}}{}= & \left(\dot{\beta}_{1} \gamma_{1}+\dot{\beta}_{2} \gamma_{2}+\left(\dot{\beta}_{3} \gamma_{3}\right) \hat{b}_{1}+\right. \\
& \left(\dot{\gamma}_{1} \alpha_{1}+\dot{\gamma}_{2} \alpha_{2}+\dot{\gamma}_{3} \alpha_{3}\right) \hat{b}_{2}+ \\
& \left(\alpha_{1} \beta_{1}+\dot{\alpha}_{2} \beta_{2}+\dot{\alpha}_{3} \beta_{3}\right) \hat{b}_{3}
\end{aligned}
$$

= angular veloaty of B ir A expressed in B

MAE223-L3-09
Wednesday October 4, 2017 11.08 AM
Simple angular velocity
rigid booty B has a simple angular velocity in RFA if then exists for a finite time, t, a single unit vector, \hat{k}, whose orientation is fixed in both A and B. (\hat{K} is the axis about which B is rotating in A). In this case $A \bar{\omega}^{B}=\omega \hat{k}$ with $\omega=\dot{\theta}$ where θ is angl between a line L_{A} foxe in A ad a similiar lin L_{B} fixed in B, both \perp to \hat{k} ω is called the angular sped of Bin A.

MAE223-L3-10

Figure 1.3.1
RF D, B, C, A

Main reason $A \omega^{B}$ is useful is to relate the derivatives of vector \bar{V} in 2 RF A and B.

$$
\frac{d \bar{V}}{d t}=\frac{B}{d t}+{ }^{A} \bar{\omega}^{B} \times \bar{V}
$$

Proof
Suppose \hat{b}_{i} be a $R t l$ coordinate system fixed

$$
\frac{d \bar{V}}{d t}=\sum_{i=1}^{3} \frac{A^{A} d v_{i}}{d t} \hat{b}_{i}+\sum_{i=1}^{3} v_{i} \frac{d}{d \hat{b}_{i}}
$$

MAE223-L3-12

$$
\begin{aligned}
\frac{A}{d t}= & \frac{{ }^{B} \bar{v}}{d t}+\sum_{i=1}^{3} v_{i}{ }^{A}-\bar{\omega}^{B} \times \hat{b}_{i} \\
& \hat{T}_{A} \bar{\omega}^{B} \times \hat{b}_{i}=\frac{{ }^{A} d b_{i}}{d t} \\
& d_{i} \text { of }
\end{aligned}
$$

$\frac{d}{d t}$ in B

$$
=\frac{B_{d} \bar{v}}{d t}+\sum_{i=1}^{3} A \bar{\omega}^{B} \times v_{i} \hat{b}_{c}
$$

$$
\frac{d \bar{V}}{d t}=\frac{B d \bar{V}}{d t}+{ }^{A} \bar{\omega}^{B} \times \bar{V}
$$

