$$
A \bar{v}^{p_{1}}=\dot{q}_{1} \hat{b}_{x}+\dot{q}_{2} \hat{b}_{y}-\omega q_{1} \hat{b}_{2}
$$

how do I express in the (E) frume?

$$
\begin{aligned}
& A^{A} V^{p_{1}}=\dot{q}_{1}\left(c_{3} \hat{e}_{x}-s_{3} \hat{e}_{y}\right)+\dot{q}_{z}\left(s_{3} \hat{e}_{x}+c_{3} \hat{e}_{y}\right)-\omega q_{1} \hat{e}_{2} \\
& \hat{b}_{x}=c_{3} \hat{e}_{x}-s_{3} \hat{e}_{y} \\
& b_{y}=s_{3} \hat{e}_{x}+c_{3} \hat{e}_{y} \\
& \hat{b}_{2}=\hat{e}_{2} \\
& \text { Figure 2.6.1 } \\
& { }^{A} \bar{V}^{P_{2}}=\frac{A_{2}}{d t} \frac{\bar{p}_{2}}{d t}=\frac{A^{\prime} \bar{p}_{1}}{d t}+\frac{{ }^{A}\left(\bar{p}_{2}-\bar{p}_{1}\right)}{d t} \\
& ={ }^{A} \bar{V}^{P_{1}}+\frac{{ }^{A} d \hat{e}_{x}}{d t}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Figure 2.6.1 } \\
& A-V^{P}={ }^{A} V^{P_{1}}+{ }^{A}{ }^{\omega} E_{x} L \hat{e}_{x}
\end{aligned}
$$

$$
\begin{aligned}
& A \bar{\omega} E=A_{-}{ }^{B}+{ }^{B} \bar{\omega}^{E}=\omega \hat{b}_{y}+\hat{q}_{3} \hat{e}_{z} \\
& A_{\omega}-E \times L \hat{e}_{x}=\left(\omega \hat{b}_{y}+\dot{q}_{3} \widehat{e}_{z}\right) \times L \hat{e}_{x}=-\omega L \hat{e}_{z}+\dot{q}_{3} L \hat{e}_{y}
\end{aligned}
$$

Two points on the same rigid body.
How an the velocities related?

What RF are P_{1} and P_{2} fixed in relative to each other?
Given RF A and 2 points axed in body B with angular velocity A is B, with \bar{p}, \bar{q} the position vectors from O (fixed in A) to P, Q, resp. and $\bar{P}=\bar{q}+\bar{r}$ so \bar{r} is a vector fun Q to P.

Velocity two point thereon

fixed in

$$
\begin{aligned}
& A \bar{a}^{P}=\frac{d^{A} \bar{v}^{P}}{d t}=\frac{d^{A} \bar{v}^{Q}}{d t}+\frac{d\left(A \bar{\omega}^{B} \times \bar{r}\right)}{d t} \\
& A \bar{a}^{P}={ }^{A} \bar{a}^{Q}+\frac{d^{A} \bar{\omega}^{B}}{d t} \times \bar{r}+{ }^{A} \bar{\omega}^{B} \times \frac{{ }^{A} d \bar{r}}{d t} \\
& A-\bar{a}={ }^{A} \bar{a}^{a}+A \bar{\alpha}^{B} \times \bar{r}+{ }^{A} \bar{\omega}^{B} \times\left({ }^{A} \bar{\omega}^{B} \times \bar{r}\right)
\end{aligned}
$$

acceleration two point theresm
ex A

MAE223-L5-04
Wednesday, October 11, 2017 11:42 AM
2.8 One point P mount on RB B (or RF B) which B moves in RFA. Let \bar{B} be the point fixed in B when P is at this instance in time (\bar{B} coincious with P presently)

$$
\begin{aligned}
& \left.\begin{array}{l}
A \bar{\omega}^{B} \neq 0 \\
A \\
V^{B} \neq 0
\end{array}\right\} B_{\text {many in } A} \\
& A \bar{V}^{P}=\bar{V}^{P}+\bar{V}^{A} \bar{B}
\end{aligned}
$$

