One point P moing in $R F / R B$ (B)
while (B) moves in another $\mathbb{R F}(\mathbb{A})$.
Let \bar{B} be apoint fixed in (B) that cancides with P at a particulm instunce.

$$
\begin{aligned}
& { }^{A} \bar{V}^{P}={ }^{B} \bar{V}^{P}+{ }^{A} \bar{V}^{\bar{B}} \\
& \bar{V}^{\bar{B}}=0
\end{aligned}
$$

(A)

Accieration

State variables of a set S of ν purtichs $p_{i} i=1,2, \ldots, 2$ in a reference frame (A) consists, of two pats:
a) configuration of S^{\prime} in A (where they are in A)
b) motion of S in A (how they are moving in A)

Fundmental question: "How does the state change with time?
Confguration-charactized by position vectors of each paction
Motion - charactized by velocity vectors of each patio When motion is unconstrained we reed 22 vectors of 6 yt measure numbers.
Constraints reduce the number of variables
Configuration variables are called "generalized coordinates of S in $A^{\prime \prime}$.
Motion variables are called "generalized speeds of S in A "
Both the GC's and GS's are functions of time and both can be chosen in an indite \# of ways.

Monday, Oct 16,2017 11.04 AM
ex hemispherical bowl of radius R with single partich massing on surface.

aH. G, C's? $\quad(\theta, 4)$ $\psi<0 \Rightarrow$ a arty constant

Configuration constraint equations that can be written as follows.

$$
f\left(x_{1}, y_{1}, z_{1}, \ldots, x_{v}, y_{v}, z_{v}, t\right)=0
$$

$\tau_{\text {no }}$ velocity terms!
holonomic constraint eq
functions of positions and time
Holmic constant types:
a) Rheonomic: when time is explicit in the constraint
b) Scleronomic: when time is implicit

Not only is $f(\ldots)=0 \quad$ but $\frac{d f}{d t}=0$

$$
f=x^{2}+y^{2}+z^{2}-R \cong 0
$$

this is "new" version of the config constraint

$$
\frac{d f}{d t}=\prod_{x}^{x \dot{x}+y} \dot{y}+2 \dot{z}=0
$$

$$
\frac{d f}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}+\frac{\partial f}{\partial t}
$$ that includes velocities.

if integrable this is a redundant way of stating $f=0$
to be in tegrable $2 f^{2} \Rightarrow$ mixed partials

$$
\left.\begin{array}{l}
\frac{\partial f}{\partial x}=x \Rightarrow \frac{\partial f^{2}}{\partial y^{2} x}=1 \\
\frac{\partial f}{\partial y}=y \Rightarrow \frac{\partial f^{2}}{\partial x^{2} y}=1
\end{array}\right\} \text { equal! }
$$

Monday, October 16, 2017 11:29 AM
"Intelligent" choices of G.C.S and G.S.S are part of "art" of dynamics.
How do we choose there?
Every system has aminimun, n, of G.C's required to specify the configuration of the system uniquely. All n coordinates must be independent to be the minimal set, iii. There are no holononic constraints if n is minimal.
All other constraints are call .d nomholonomic constraints.
Norholomic constraints must involve velocities but are not abs to be integrated to remove the velocity dependence. NH constraints are essential velocity constraints.

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)
$$

ex ice skate black that can slide only along its length

(A)

$$
\begin{aligned}
& \text { 3G.Cis } x, y, \theta \\
& \dot{x}, \dot{y} \text { are mesurure number } \\
& \text { of } A \bar{v} P \\
& \tan \theta=\frac{\dot{y}}{\dot{x}} \\
& \rightarrow \text { non } \\
& \text { holonomil! }
\end{aligned}
$$

$\frac{d f}{d t}=\frac{2 f}{2 x} \frac{d x^{x}+\frac{2 f}{d t} \frac{d y}{d t}+\frac{\partial f}{\partial \theta} \frac{d \theta}{d t} \text { is it integrable ? }}{\text { ? } \dot{x+\tan \theta-\dot{y}=0}}$

$$
+\frac{\partial f}{\partial t}
$$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\tan \theta \quad \frac{\partial f}{\partial y}=-1 \quad \frac{\partial f}{\partial \theta}=0 \\
& \frac{\partial^{2} f}{\partial x 2 y}=\frac{\partial^{2} f}{\partial y \partial x} \quad \frac{\partial^{2} f}{\partial x \partial \theta} \stackrel{?}{=} \frac{\partial^{2} f}{2 \theta 2 x} \\
& 0=\sec ^{2} \theta x
\end{aligned}
$$

$$
0=0
$$

