$\frac{\text { Partial Velocities and Partial Angular Velocities }}{q_{1}, \ldots, q_{n} \text { Ge's } \quad U_{1}, \ldots, u_{n} G . S_{s}^{\prime}}$
Howe lots of rigid bodies ad points is systion whose motion is of interest. All velocities and angular velocities in this $\overline{\text { system can }}$ aud argular velocition in this system can
be expressed uniquely as functions of the $u_{i}$ 's.

Note that

$$
\begin{aligned}
& \bar{\omega}_{r}=\frac{\partial \bar{\omega}}{\partial u_{r}} \\
& \bar{v}_{r}=\frac{\partial \overline{v^{\prime}}}{\partial u_{r}}
\end{aligned}
$$

$\bar{\omega}_{r}, \bar{V}_{r}, \bar{\omega}_{t}, \bar{V}_{t}$ are functions of $q_{1}, \ldots, q_{n}, t$

2x: Calculation of partial velocitics

$$
u_{1}=\dot{q} \quad I \text { defiru! }
$$



$$
\begin{aligned}
{ }^{N} V^{A} & =\dot{q}_{1} \hat{n}_{1}=u_{1} \hat{n}_{1} \\
N V^{B} & =N^{N} T^{A} \bar{\omega}^{B} \times r^{B / A} \\
& =u_{1} \hat{n}_{1}+\dot{q}_{2} \hat{n}_{3} \times-L \hat{R}_{2} \\
& =u_{1} \hat{n}_{1}+\dot{q}_{2} \hat{n}_{3} \times\left(-L c_{2} \hat{n}_{1}-L s_{2} \hat{n}_{2}\right) \\
N_{V}^{B} & =\left(u_{1}+L \dot{q}_{2} s_{2}\right) \pi_{1}-L \dot{q}_{2} c_{2} \hat{n}_{2} \\
u_{2} & =\dot{q}_{2}
\end{aligned}
$$

no conty con.
2 G.C.S: $q_{1}, q_{2} \quad n=2$

$$
\begin{aligned}
N_{V}^{B} & =\left(u_{1}+L \dot{q}_{2} s_{2}\right) \hat{\Lambda}_{1}-L \dot{q}_{2} c_{2} \hat{n}_{2} \\
u_{2} & =\dot{q}_{2}
\end{aligned}
$$

$$
\text { \# DOF: } 2 \quad P=n-m
$$

no motion constrints!


$$
\bar{A} \bar{\omega}^{B}=u_{2} \widehat{n}_{3}
$$

* elimimate all $\dot{q}_{i}$ from vals..

$$
\begin{array}{ll}
N \bar{V}_{1}^{B}=?=\hat{n}_{1} & N \bar{V}_{2}^{B}=7=\hat{n}_{1} L s_{2}-\hat{n}_{2} L c_{2} \\
A \bar{\omega}_{1}^{B}=?=0 & A \bar{\omega}_{2}^{B}=?=\hat{n}_{3}
\end{array}
$$

MAE223-L9-03
Wednesday, October 25, 2017 10:47 AM


$$
\begin{array}{ll}
A-\bar{V}_{1}=\dot{q}_{1} \hat{b}_{x}+\dot{\tau}_{2} \hat{b}_{y}-\omega q_{1} \hat{b}_{2} & A-\bar{V}_{3}^{p_{1}}=0 \\
{ }^{-} \bar{V}_{1} P_{1}=\left(\dot{q}_{1} c_{3}+\dot{q}_{2} s_{3}\right) \hat{e}_{x}+\left(-\dot{q}_{1} s_{3}+\tau_{2} c_{3} \hat{e}_{y}-\omega \hat{q}_{1} \hat{e}_{2}\right. & A \bar{V}_{t}^{p_{1}}=-\omega \hat{q}_{1} \hat{e}_{2} \\
{ }^{-} \bar{V}_{1}=\left[\dot{q}_{1} \cos (\omega t)-\omega q_{1} \sin (\omega t)\right] \hat{a}_{x}+\dot{q}_{2} \hat{a}_{y}-\left(\dot{q}_{1} \sin (\omega t)+\omega q_{1} \cos (\omega t)\right] \hat{a}_{2} &
\end{array}
$$

(1) $u_{1}=\dot{q}_{1}, u_{2}=\dot{q}_{2}, u_{3}=\dot{q}_{3}$
(2) $u_{1}=\dot{q}_{1} c_{3}+\dot{q}_{2} s_{3}, u_{2}=\dot{q}_{3} c_{3}-q_{1} s_{3}, u_{3}=\dot{q}_{3}$

Chapter 1

- Vectors (measure \#s and compenets)
- reference fame (mutually perpadicala unituectros)
- derivatives of vectors in different reference fins
- Diff. Sums, Products:
- Total denvaliars (chain rule)
$\frac{A}{\partial \bar{V}}=\sum_{i=1}^{3} \frac{\partial \nu_{i}}{\partial q} \hat{a}_{i}$ where $\bar{V}=\nu_{1} \hat{a}_{1}+\nu_{2} \hat{a}_{2}+\nu_{3} \tilde{a}_{3}$

$$
\frac{d \bar{v}}{d t}=\sum_{i=1}^{3} \frac{\partial \bar{v}}{\partial q_{r}} \dot{q}_{r}+\frac{\partial \bar{v}}{\partial t}
$$

Kinematic

$$
\frac{\operatorname{ramatis}}{A \bar{\omega}^{B} \stackrel{\Delta}{=} \hat{b}_{1}} \frac{\hat{d}_{2}}{d t} \cdot \hat{b}_{3}+\hat{b}_{2}^{A} \frac{d \hat{b}_{3}}{d t} \cdot \hat{b}_{1}+\hat{b}_{3} \frac{d b_{1}}{d t} \cdot \hat{b}_{2}
$$

simple arg vel: $A \omega^{-B}=\omega \hat{k}$

$$
\frac{d \bar{v}}{d t}=\frac{{ }^{B}}{d \bar{v}}+{ }^{A} \bar{\omega}^{B} \times \bar{v}
$$

Aux. RF

$$
{ }^{A} \bar{\omega}^{B}={ }^{A} \bar{\omega}^{A_{1}}+{ }^{A_{1}} \bar{\omega}^{A_{2}}+\ldots+{ }^{A_{n-1}} \bar{\omega}^{A_{n}}+{ }^{A_{n}} B
$$

very useful simple rotation $s$ no addition for $A \alpha^{B}$ !
$A_{n g}$ acc

$$
\begin{array}{ll}
\alpha^{B} \triangleq \frac{d^{A}-\bar{\omega}}{d t} & \sin ^{2} \text { e and acc } \\
& A-\alpha^{B}=\alpha \hat{k} \\
& \alpha=\frac{d \text { as }}{d t}
\end{array}
$$

Lined vel $f$ ace

$$
\begin{aligned}
& A-P \triangleq \frac{A}{A} \bar{P}-\text { position of point } \\
& A t \\
& A-P \triangleq \frac{d^{A} \bar{V}}{d t}
\end{aligned}
$$

Two points on rigid body (or RFF)
Centripetal acc

$$
A-P={ }^{A} \bar{V}^{Q}+A{ }^{A} \omega^{B} \times \bar{r}^{P / Q}
$$

$P$ and $Q$ fell rel $t$ each other in $B$
One points mulley on rid body


B point feed in
(b) at that in stance of time

Conflywation constraints (holononic)

$$
V=\# \text { partichs }
$$

$$
f\left(x_{1}, y_{1}, z_{1}, \ldots, x_{\nu}, y_{v}, z_{v}, t\right)=0
$$

$$
q_{1}=L+q_{2}
$$

Motion constrants (norhalomic) ex. config constraint $\Rightarrow q_{1}=f\left(q_{2}\right)$

$$
g\left(x_{1}, y_{1,2}, \ldots x_{n}, y_{n}, z_{n}, \dot{x}_{1}, \dot{y}_{1}, \dot{z}_{1}, \ldots, \dot{x}_{v}, \dot{y}_{2}, \dot{z}_{1}, t\right)=0
$$

If mixod partials commate then it is integabl and $g$ is not a motion constrant, it is a constiguration con.

$$
\underset{\text { mox. }}{\text { mox. }} \rightarrow N \bar{V}^{P}=0
$$

if $g$ is $n_{0} t$ integrable (imixd din't commate),
it is an essential notholonomic M.C.

